Enhanced Formation of the Carbon Microcoils by the Stepwise Type Manipulation of CS2 Flow Injection

Abstract:

Article Preview

Carbon coils were synthesized using C2H2 as source gas and CS2 as an incorporated additive gas under the thermal chemical vapor deposition system. The flow rate of CS2 varied according to the different reaction processes. Geometries of as-grown carbon nanomaterials were developed from vine-type into coil-type with increasing CS2 flow rate from 5 to 20sccm. Above 20sccm of CS2 flow rate, indeed, most of them were appeared as the tiny-sized wavelike nanocoil type geometries. To develop the double helix-type microcoils, namely the carbon microcoils, the injection of CS2 flow was manipulated as the stepwise type on/off-cycle manner. Under the specific condition of the on/off-cycle number, the density of the carbon microcoils was enhanced. The cause for the enhanced formation density of the carbon microcoils by the stepwise type manipulation of CS2 flow injection was suggested and discussed.

Info:

Periodical:

Edited by:

Serge Zhuiykov

Pages:

83-91

Citation:

N. Y. Lee and S. H. Kim, "Enhanced Formation of the Carbon Microcoils by the Stepwise Type Manipulation of CS2 Flow Injection", Key Engineering Materials, Vol. 765, pp. 83-91, 2018

Online since:

March 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy: Science Vol. 265 (1994), p.635–639.

[2] K. Hernadi, L. Thien-Nga and L. Forro: J. Phys. Chem. B Vol. 105 (2001), p.12464–12468.

DOI: https://doi.org/10.1021/jp011208p

[3] N.M. Rodriguez, A. Chambers, R. Terry and K. Baker: Langmuir Vol. 11 (1995), p.3862–3866.

[4] A. Shaikjee and N. J. Coville: J. Adv. Res. Vol. 3 (2012), p.195–223.

[5] S. H. Lee and I. K. Oh: Compsites Research Vol. 29 (2016), p.138–144.

[6] K.T. Lau, M. Lu and D. Hui: Composites Vol. B37 (2006), p.437–448.

[7] X. Qi, C. Qin, W. Zhong, C. Au, X. Ye and Y. Du: Materials Vol. 3 (2010), p.4142–4174.

[8] S. E. An and S. H. Kim: Key Engineering Materials Vol. 730 (2017), p.327–332.

[9] D. L. Zhao and Z. M. Shen: Materials Letters Vol. 62 (2008), p.3704–3706.

[10] R. T. K. Baker, G. R. Gadsby, R. B. Thomas and R. J. Waite: Carbon Vol. 13 (1975), p.211–214.

[11] J. H. Eum, S. H. Kim, S. S. Yi and K. Jang: Journal of Nanoscience and Nanotechnology Vol. 12 (2012), p.4397–4402.

[12] Y. C. Jeon and S. H. Kim: Journal of Nanoscience and Nanotechnology Vol. 12 (2012), p.5957–5961.

[13] S. Motojima, M. Kawaguchi and K. H. Iwanaga: Carbon Vol. 29 (1991), p.379–385.

[14] M. Kawaguchi, K. Nozaki, S. Motojima and H. Iwanaga: Journal of Crystal Growth Vol. 118 (1992), p.309–313.

[15] Y. C. Jeon and S. H. Kim: Vacuum Vol. 107 (2014), p.219–224.

[16] S. Park, Y. C. Jeon and S. H. Kim: ECS Journal of Solid State Science and Technology Vol. 2 (2013), p. M56–M59.

[17] H. Bi, K. C. Koua, K. Ostrikovc, L. K. Yand, J. Q. Zhanga, T. Z. Ji and Z. C. Wang: Materials Chemistry and Physics Vol. 116 (2009), p.442–448.

[18] P. Scherrer: Mathematisch-Physikalische Klasse Vol. 1918 (1918), p.98–100.

[19] C. T. Hsieh, Y. T. Lin, J. Y. Lin and J. L. Wei: Materials Chemistry and Physics Vol. 114 (2009), p.702–708.