A Novel Radiation Shielding Material for Gamma-Ray: The Development of Lutetium Lithium Borate Glasses

Abstract:

Article Preview

This work, gamma-ray shielding properties of the lutetium lithium borate glasses in the system Lu2O3 - Li2O - B2O3 have been evaluated as a shielding material at 662 keV photon energy. While the experimental mass attenuation coefficients (μm) have been determined by using the narrow beam transmission method, the theoretical data were calculated using WinXCom program. The good agreements between experimental and theoretical values have been obtained. Both experimental and computational mass attenuation coefficients data were used to obtain the effective atomic number (Zeff), and the effective electron density (Nel). Based on the obtained data, the Lu-based glasses have good shielding properties, the improved glasses could be used as gamma-rays shielding material.

Info:

Periodical:

Edited by:

Dr. Somnuk Sirisoonthorn, Dr. Sirithan Jiemsirilers, Thanakorn Wasanapiarnpong, Dr. Nutthita Chuankrerkkul, Rojana Pornprasertsuk, Nisanart Traiphol and Pornapa Sujaridworakun

Pages:

246-251

Citation:

P. Glumglomchit et al., "A Novel Radiation Shielding Material for Gamma-Ray: The Development of Lutetium Lithium Borate Glasses", Key Engineering Materials, Vol. 766, pp. 246-251, 2018

Online since:

April 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] Y. Yao, X. Zhang, M. Li, R. Yang, T. Jiang and J. Lv, Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive, Radiat. Phys. Chem. 127 (2016).

DOI: https://doi.org/10.1016/j.radphyschem.2016.06.028

[2] H. S. Mann, G. S. Brar and G. S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127(2016) 97-101.

DOI: https://doi.org/10.1016/j.radphyschem.2016.06.013

[3] H. Gülbiçim, M. Ç. Tufan and M. N. Türkan, The investigation of vermiculite as an alternating shielding material for gamma rays, Radiat. Phys. Chem. 130 (2017) 112-117.

DOI: https://doi.org/10.1016/j.radphyschem.2016.07.025

[4] H. E. Hassan, H. M. Badran, A. Aydarous and T. Sharshar, Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays, Nucl. Instrum. Methods Phys. Res., Sect. B 360 (2015) 81-89.

DOI: https://doi.org/10.1016/j.nimb.2015.07.126

[5] M. Erdem, O. Baykara, M. Dogru and F. Kuluozturk, A novel shielding material prepared from solid waste containing lead for gamma ray, Radiat. Phys. Chem. 79 (2010) 917-922.

DOI: https://doi.org/10.1016/j.radphyschem.2010.04.009

[6] M. Kurudirek and Y.Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids, fatty acids and carbohydrates in the energy range 0.015–15 MeV up to 40 mean free path, Nucl. Instrum. Methods Phys. Res., Sect. B 269 (2011).

DOI: https://doi.org/10.1016/j.nimb.2010.10.015

[7] R. Sharma, V. Sharma, P. S. Singh and T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses, Ann. Nucl. Energy 45 (2012) 144-149.

DOI: https://doi.org/10.1016/j.anucene.2012.03.005

[8] El-Sayed A. Waly, M. A. Fusco and M. A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy 96 (2016) 26-30.

DOI: https://doi.org/10.1016/j.anucene.2016.05.028

[9] P. Kaur, D. V. Singh and T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des. 307 (2016) 364-376.

DOI: https://doi.org/10.1016/j.nucengdes.2016.07.029

[10] H. S. Mann, G. S. Brar, K. W. Mann and G. S. Mudahar, Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding, Nuclear Engineering and Technology 48 (2016) 1230-1236.

DOI: https://doi.org/10.1016/j.net.2016.04.001

[11] Yu. L. Kopylov, V. B. Kravchenko, N. A. Dulina, A. V. Lopin, S. V. Parkhomenko, A. V. Tolmachev, R. P. Yavetskiy and O. V. Zelenskaya, Fabrication and characterization of Eu3+-doped Lu2O3 scintillation ceramics, Opt. Mater. 35 (2013) 812-816.

DOI: https://doi.org/10.1016/j.optmat.2012.04.020

[12] W. Chewpraditkul, K. Sreebunpeng, M. Nikl, J. A. Mares, K. Nejezchleb, A. Phunpueok and C. Wanarak, Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection, Radiation Measurements 47 (2012) 1-5.

DOI: https://doi.org/10.1016/j.radmeas.2011.08.023

[13] L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654.

DOI: https://doi.org/10.1016/j.radphyschem.2004.04.040

[14] L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, X-ray absorption in matter. Re-engineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24.

DOI: https://doi.org/10.1016/s0969-806x(00)00324-8

[15] P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan and W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solids 72 (2011) 245-251.

DOI: https://doi.org/10.1016/j.jpcs.2011.01.007

[16] N. Singh, K. J. Singh, K. Singh and H. Singh, Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials, Nucl. Instrum. Methods Phys. Res., Sect. B 225 (2004) 305-309.

DOI: https://doi.org/10.1016/j.nimb.2004.05.016

[17] D. C. Creagh and J. H. Hubbell, Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Report of the International Union of Crystallography X-ray Attenuation Project, Acta Crystallogr. A 43 (1987) 102-112.

DOI: https://doi.org/10.1107/s0108767387099793

[18] D. C. Creagh and J. H. Hubbell, Problems associated with the measurement of X-ray attenuation coefficients. II. Carbon. Report on the International Union of Crystallography X-ray Attenuation Project, Acta Crystallogr. A 46 (1990) 402-408.

DOI: https://doi.org/10.1107/s0108767389013887

[19] T. Singh, and P.S Singth, Partial as well as total photon interaction effective atomic numbers for some concretes, J. Nucl. Phys, Mater. Sci. Radiat. Appl. 1 (2013) 97-105.

DOI: https://doi.org/10.15415/jnp.2013.11009