Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting

Abstract:

Article Preview

NiTi is characterized as a shape memory alloy that has found interesting applications from aerospace to biomedical engineering. The use of NiTi in biomedical applications is due to its excellent biocompatibility, shape memory and pseudoelastic properties. These properties make NiTi an excellent candidate for many functional designs in biomedical fields. However, difficulties in manufacturing and processing of this alloy are significant hindrance to widespread applications. Advances in additive manufacturing (AM) such as selective laser and electron beam techniques have provided opportunities in manufacturing complex shaped NiTi parts. In this research paper, we demonstrate manufacturing of NiTi parts using a selective electron beam melting (SEBM) technique. Complete evaluation of physical, chemical and mechanical properties was carried out to determine the suitability of SEBM process. Differential scanning calorimeter (DSC), X-ray diffraction (XRD), and metallographic analyses were employed for the thermal and structural characterizations. The obtained results suggest that it is imperative to, and challenging to control the additive manufacturing process in order to obtain the desired microstructures and avoid unwanted texture. An exhaustive heat treatment of the samples after SEBM process might also be necessary.

Info:

Periodical:

Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen

Pages:

148-154

Citation:

M. D. Hayat et al., "Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting", Key Engineering Materials, Vol. 770, pp. 148-154, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57 (2012) 911-946.

DOI: https://doi.org/10.1016/j.pmatsci.2011.11.001

[2] D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials, 38 (2006) 430-462.

DOI: https://doi.org/10.1016/j.mechmat.2005.08.003

[3] E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, 38 (2006) 391-429.

DOI: https://doi.org/10.1016/j.mechmat.2005.05.027

[4] E. Tarkesh Esfahani, M.H. Elahinia, Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device, Journal of Vibration and Control, 16 (2010) 1897-(1914).

DOI: https://doi.org/10.1177/1077546309344163

[5] T. Bormann, R. Schumacher, B. Müller, M. Mertmann, M. de Wild, Tailoring Selective Laser Melting Process Parameters for NiTi Implants, Journal of Materials Engineering and Performance, 21 (2012) 2519-2524.

DOI: https://doi.org/10.1007/s11665-012-0318-9

[6] L. Petrini, F. Migliavacca, Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy, 2011 (2011).

[7] K. Weinert, V. Petzoldt, Machining of NiTi based shape memory alloys, Materials Science and Engineering: A, 378 (2004) 180-184.

DOI: https://doi.org/10.1016/j.msea.2003.10.344

[8] J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys, Advanced Engineering Materials, 8 (2006) 247-252.

DOI: https://doi.org/10.1002/adem.200500258

[9] G. Chen, K.-D. Liss, P. Cao, In situ observation and neutron diffraction of NiTi powder sintering, Acta Materialia, 67 (2014) 32-44.

DOI: https://doi.org/10.1016/j.actamat.2013.12.013

[10] G. Chen, P. Cao, NiTi Powder Sintering from TiH2 Powder: An In Situ Investigation, Metallurgical and Materials Transactions A, 44 (2013) 5630-5633.

DOI: https://doi.org/10.1007/s11661-013-2078-z

[11] G. Chen, G. Wen, P. Cao, N. Edmonds, Y. Li, Processing and characterisation of porous NiTi alloy produced by metal injection moulding, Powder Injection Moulding International, 6 (2012) 83-88.

[12] G. Chen, P. Cao, G. Wen, N. Edmonds, Y. Li, Using an agar-based binder to produce porous NiTi alloys by metal injection moulding, Intermetallics, 37 (2013) 92-99.

DOI: https://doi.org/10.1016/j.intermet.2013.02.006

[13] G. Chen, Powder metallurgical titanium alloys (TiNi and Ti-6Al-4V) : injection moulding, press-and-sinter, and hot pressing, (2014).

[14] G. Chahine, M. Koike, T. Okabe, P. Smith, R. Kovacevic, The design and production of Ti-6Al-4V ELI customized dental implants, JOM, 60 (2008) 50-55.

DOI: https://doi.org/10.1007/s11837-008-0148-2

[15] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, 2nd ed., Springer-Verlag New York, New York, (2015).

[16] S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, N.A.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Science and Technology of Advanced Materials, 16 (2015).

DOI: https://doi.org/10.1088/1468-6996/16/3/033502

[17] A. Bernard, G. Taillandier, K.P. Karunakaran, Evolutions of rapid product development with rapid manufacturing: concepts and applications, International Journal of Rapid Manufacturing, 1 (2009) 3-18.

DOI: https://doi.org/10.1504/ijrapidm.2009.028929

[18] I.V. Shishkovsky, Shape memory effect in porous volume NiTi articles fabricated by selective laser sintering, Technical Physics Letters, 31 (2005) 186-188.

DOI: https://doi.org/10.1134/1.1894427

[19] I.V. Shishkovsky, M.V. Kuznetsov, Y.G. Morozov, Porous titanium and nitinol implants synthesized by SHS/SLS: Microstructural and histomorphological analyses of tissue reactions, International Journal of Self-Propagating High-Temperature Synthesis, 19 (2010).

DOI: https://doi.org/10.3103/s1061386210020123

[20] I.V. Shishkovsky, L.T. Volova, M.V. Kuznetsov, Y.G. Morozov, I.P. Parkin, Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi, Journal of Materials Chemistry, 18 (2008) 1309-1317.

DOI: https://doi.org/10.1039/b715313a

[21] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals - Manufacturing Technology, 56 (2007) 730-759.

DOI: https://doi.org/10.1016/j.cirp.2007.10.004

[22] B. Vandenbroucke, J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13 (2007) 196-203.

DOI: https://doi.org/10.1108/13552540710776142

[23] A. Mazzoli, M. Germani, R. Raffaeli, Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment, Materials & Design, 30 (2009) 3186-3192.

DOI: https://doi.org/10.1016/j.matdes.2008.11.013

[24] L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Materials Characterization, 60 (2009).

DOI: https://doi.org/10.1016/j.matchar.2008.07.006

[25] P. Wang, M.L.S. Nai, X. Tan, G. Vastola, S. Raghavan, W.J. Sin, S.B. Tor, Q.X. Pei, J. Wei, Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting, 2016 Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing ConferenceAustin, Texas, USA, (2016).

DOI: https://doi.org/10.3390/ma10101121

[26] ASTM, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, ASTM B962-15, ASTM International, West Conshohocken, PA, (2015).

DOI: https://doi.org/10.1520/b0962-08

[27] D.H. Abdeen, B.R. Palmer, Effect of processing parameters of electron beam melting machine on properties of Ti-6Al-4V parts, Rapid Prototyping Journal, 22 (2016) 609-620.

DOI: https://doi.org/10.1108/rpj-09-2014-0105

[28] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science, 50 (2005) 511-678.

DOI: https://doi.org/10.1016/j.pmatsci.2004.10.001

[29] M. Whitney, S.F. Corbin, R.B. Gorbet, Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis, Acta Materialia, 56 (2008) 559-570.

DOI: https://doi.org/10.1016/j.actamat.2007.10.012

[30] M. Whitney, S.F. Corbin, R.B. Gorbet, Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi, Intermetallics, 17 (2009) 894-906.

DOI: https://doi.org/10.1016/j.intermet.2009.03.018

[31] A. Biswas, Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure, Acta Materialia, 53 (2005) 1415-1425.

DOI: https://doi.org/10.1016/j.actamat.2004.11.036

[32] M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Materials Science and Engineering: A, 280 (2000) 334-348.

DOI: https://doi.org/10.1016/s0921-5093(99)00550-x

Fetching data from Crossref.
This may take some time to load.