First Principle Study of Ti50Al50 Alloys


Article Preview

The study on the Ti-based materials and its application has been the interest of many research industries. These alloys are known to have an ordered B2 phase at high temperatures and transform to a stable low B19 martensitic phase. First principle approach has been used to study L10, B32, B2 and B19 Ti50Al50 alloys and the results compared well with the available experimental data. The equilibrium lattice constants are in good agreement with the experimental values (within 3% agreement). Furthermore, the elastic constants of these alloys are calculated, and revealed stability for L10 and B19 structures, while B2 and B32 gave C′<0 (condition of instability).



Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen




R. Modiba et al., "First Principle Study of Ti50Al50 Alloys", Key Engineering Materials, Vol. 770, pp. 224-229, 2018

Online since:

May 2018




* - Corresponding Author

[1] Y.W. Kim, Ordered Intermetallic Alloys, Part III:Gamma Titanium Aluminides,, JOM, vol. 46, p.30–39, (1994).


[2] C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Tensile Properties and Fracture Toughness of TiAl Alloys with Controlled Microstructures,, Intermetallics, vol. 6, pp.653-661, (1998).


[3] X. Wu, Review of Alloy and Process Development of TiAl Alloys,, Intermetallics, vol. 14, pp.1114-1122, (2006).


[4] I. Baker, P.R. Munroe, Improving intermetallic ductility and toughness,, JOM, vol. 40 , pp.28-31, (1988).


[5] G. Kresse and J. Hafner, Ab-initio Molecular Dynamics for Liquid Metals,, Phys. Rev. B, vol. 47, pp.558-561, (1993).


[6] G. Kresse and J. Hafner, Ab-initio Molecular Dynamics Simulation of the Liquid-metal-Amorphous-semiconductor Transition in Germanium.,, Phys. Rev. B, vol. 49, pp.14251-14269, (1994).


[7] G. Kresse and J. Furthmüller, Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set.,, Comput. Mat. Sci., vol. 6, pp.15-50, (1996).


[8] G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab-initio Total-energy Calculations Using a Plane-wave Basis Set,, Phys. Rev. B, vol. 54, nº 16, pp.11169-11186, (1996).


[9] P.E. Blöchl, Projector Augmented-plane Wave Method,, Phys. Rev. B, vol. 50, nº 24, pp.17953-17978, (1994).


[10] S. Plimpton, Fast Parallel Algorithms for Short–Range Molecular Dynamics,, J Comp Phys., vol. 117, pp.1-19, (1995).

[11] H.J. Monkhorst and J.D. Pack, On Special Points for Brillouin Zone Integrations,, Phys. Rev. B, vol. 13, pp.5188-5192, (1976).


[12] K. Parlinski and Z. Q. Li, Y. Kawazoe, Phys. Rev. Lett. , vol. 78, p.4063, (1997).

[13] M.J. Phasha, P.E. Ngoepe, D.G. Pettifor, D. Nguyen-Mann , Link Between Structural and Mechanical Stability of fcc- and bcc-Based Ordered Mg-Li Alloys,, Intermetallics, vol. 11, pp.2083-2089, (2010).


[14] R. Mahlangu, M.J. Phasha, H.R. Chauke, P.E. Ngoepe , Structural, Elastic and Electronic Properties of Equiatomic PtTi as Potential High-Temperature Shape Memory Alloy,, Intermetallics, vol. 33, pp.1-6, (2013).


[15] HR Chauke, B Minisini, R Drautz, D Nguyen-Manh, Theoretical Investigation of the Pt 3 Al Ground State,, Intermetallics, vol. 18, pp.417-421, (2010).


[16] K. Tanaka, Single-crystal Elastic Constants of Gamma-TiAl,, Philos Mag Lett., vol. 73, pp.71-78, (1996).

[17] G. Ghosh, M. Asta,, First-principles Calculation of Structural Energetics of Al-TM (TM = Ti, Zr, Hf) Intermetallics,, Acta Mater., vol. 53, pp.3225-3252, (2005).


[18] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P.C. Schmidt, Ab-Initio Calculation of the Elastic Constants and Thermal Expansion Coefficients of Laves Phases,, Intermetallics, vol. 11, pp.23-32, (2003).


[19] S. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals,, Philos. Mag, vol. 45, nº 367, pp.823-843, (1954).

[20] K. Gschneidner, et al., A family of Ductile Intermetallic Compounds,, Nat. Mater., vol. 2, pp.587-591, (2003).