[1]
Y.W. Kim, Ordered Intermetallic Alloys, Part III:Gamma Titanium Aluminides,, JOM, vol. 46, p.30–39, (1994).

[2]
C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, D.S. Easton, Tensile Properties and Fracture Toughness of TiAl Alloys with Controlled Microstructures,, Intermetallics, vol. 6, pp.653-661, (1998).

[3]
X. Wu, Review of Alloy and Process Development of TiAl Alloys,, Intermetallics, vol. 14, pp.1114-1122, (2006).

[4]
I. Baker, P.R. Munroe, Improving intermetallic ductility and toughness,, JOM, vol. 40 , pp.28-31, (1988).

[5]
G. Kresse and J. Hafner, Ab-initio Molecular Dynamics for Liquid Metals,, Phys. Rev. B, vol. 47, pp.558-561, (1993).

[6]
G. Kresse and J. Hafner, Ab-initio Molecular Dynamics Simulation of the Liquid-metal-Amorphous-semiconductor Transition in Germanium.,, Phys. Rev. B, vol. 49, pp.14251-14269, (1994).

[7]
G. Kresse and J. Furthmüller, Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set.,, Comput. Mat. Sci., vol. 6, pp.15-50, (1996).

[8]
G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab-initio Total-energy Calculations Using a Plane-wave Basis Set,, Phys. Rev. B, vol. 54, nº 16, pp.11169-11186, (1996).

[9]
P.E. Blöchl, Projector Augmented-plane Wave Method,, Phys. Rev. B, vol. 50, nº 24, pp.17953-17978, (1994).

[10]
S. Plimpton, Fast Parallel Algorithms for Short–Range Molecular Dynamics,, J Comp Phys., vol. 117, pp.1-19, (1995).

[11]
H.J. Monkhorst and J.D. Pack, On Special Points for Brillouin Zone Integrations,, Phys. Rev. B, vol. 13, pp.5188-5192, (1976).

[12]
K. Parlinski and Z. Q. Li, Y. Kawazoe, Phys. Rev. Lett. , vol. 78, p.4063, (1997).

[13]
M.J. Phasha, P.E. Ngoepe, D.G. Pettifor, D. Nguyen-Mann , Link Between Structural and Mechanical Stability of fcc- and bcc-Based Ordered Mg-Li Alloys,, Intermetallics, vol. 11, pp.2083-2089, (2010).

[14]
R. Mahlangu, M.J. Phasha, H.R. Chauke, P.E. Ngoepe , Structural, Elastic and Electronic Properties of Equiatomic PtTi as Potential High-Temperature Shape Memory Alloy,, Intermetallics, vol. 33, pp.1-6, (2013).

[15]
HR Chauke, B Minisini, R Drautz, D Nguyen-Manh, Theoretical Investigation of the Pt 3 Al Ground State,, Intermetallics, vol. 18, pp.417-421, (2010).

[16]
K. Tanaka, Single-crystal Elastic Constants of Gamma-TiAl,, Philos Mag Lett., vol. 73, pp.71-78, (1996).

[17]
G. Ghosh, M. Asta,, First-principles Calculation of Structural Energetics of Al-TM (TM = Ti, Zr, Hf) Intermetallics,, Acta Mater., vol. 53, pp.3225-3252, (2005).

[18]
B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P.C. Schmidt, Ab-Initio Calculation of the Elastic Constants and Thermal Expansion Coefficients of Laves Phases,, Intermetallics, vol. 11, pp.23-32, (2003).

[19]
S. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals,, Philos. Mag, vol. 45, nº 367, pp.823-843, (1954).

[20]
K. Gschneidner, et al., A family of Ductile Intermetallic Compounds,, Nat. Mater., vol. 2, pp.587-591, (2003).