Advances in Ti-Based Systems as High Temperature Shape Memory Alloys

Abstract:

Article Preview

In this study, we investigate the effect of ternary addition on the structural, mechanical properties and temperature dependence of Ti-based as potential shape memory alloys using molecular dynamics approach. We found that binary Ti-Pt alloys exhibit shape memory properties and display possible martensitic transformation from B2 to B19 phases. Partial addition with Zr, Co, Pd, Ir showed preferential ternary high temperature shape memory alloys formation of 6.25 at. % X composition (Ti-Pt-X). We found that the equilibrium lattice constants are in better agreement with the available experimental values. The heats of formation and elastic properties reveal possible composition and phases at temperature above 900 K with good shape memory properties. Their structures were confirmed using the X-ray diffraction patterns at different temperatures.

Info:

Periodical:

Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen

Pages:

230-238

Citation:

H. Chauke et al., "Advances in Ti-Based Systems as High Temperature Shape Memory Alloys", Key Engineering Materials, Vol. 770, pp. 230-238, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] S. Daly , A. Miller, G. Ravichandran and K. Bhattacharya, An experimental investigation of crack initiation in thin sheets of nitinol,, Acta Materialia, vol. 55, no. 18, pp.6322-6330, (2007).

[2] T. Biggs, M. B. Cortie, M. J. Witcomb and L. A. Cornish, Martensitic transformation, microstructure, and mechanical workability of TiPt,, Metall. Mater.Trans, vol. 32A, no. 81, pp.1881-1886, (2001).

[3] H.C. Donkersloot and J.H.N. van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition,, J. Less-Common Metals, vol. 20, no. 2, pp.83-91, (1970).

[4] W. Cai, S. Tanaka and K. Otsuka, Mater. Sci. Forum, Vols. 327-328, pp.279-82, (2000).

[5] K. Otsuka, K. Oda, Y. Ueno, M. Piao, T. Ueki and H. Horikawa, The shape memory effect in a Ti50Pd50 alloy,, Scripta Metall. Mater., vol. 29, no. 10, pp.1355-1358, (1993).

[6] T.T. Sasaki, B.C. Hornbuckle, R.D. Noebe, G.S. Bigelow, M.L. Weaver and G.B. Thompson, Effect of aging on microstructure and shape memory properties of a Ni-48Ti-25Pd (At. Pct) alloy,, Metall. and Mater. Trans., vol. 44A, pp.1388-1400, (2013).

[7] G. Bozzolo, R. D. Noebe and H. O. Mosca, Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf,, J. Alloys. Comp., vol. 389, pp.80-94, (2005).

[8] Y. Yamabe-Mitarai, R. Arockiakumar, A. Wadood, K. S. Suresh, T. Kitashima, T. Hara, M. Shimojo, W. Tasaki, M. Takahashi, S. Takahashi and H. Hosoda, Ti(Pt, Pd, Au) based high temperature shape memory alloys,, in Materials Today: Proceedings, (2015).

[9] G. Bozzolo, H. O. Mosca and R. D. Noebe, Phase structure and site preference behavior of ternary alloying,, Intermetallics, vol. 15, pp.901-911, (2007).

[10] A. Wadood, M. Takahashi, S. Takahashi, H. Hosoda and Y. Yamabe-Mitarai, High-temperature mechanical and shape memory properties of TiPt-Zr and TiPt-Ru alloys,, Mater. Sci. Eng., vol. A564, pp.34-41, (2013).

[11] R. Mahlangu, M.J. Phasha, H.R. Chauke, P.E. Ngoepe , Structural, Elastic and Electronic Properties of Equiatomic PtTi as Potential High-Temperature Shape Memory Alloy,, Intermetallics, vol. 33, pp.1-6, (2013).

[12] G.W. Fernando, R.E. Watson and M. Weinert, Heats of formation of transition-metal alloys: Full-potential approach and the Pt-Ti system,, Phys. Rev. B, vol. 45, no. 15, pp.8233-8238, (1992).

[13] W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects,, Phys. Rev., vol. 140, no. 4, pp. A1133-1138, (1965).

[14] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,, Phys. Rev. B, vol. 54, no. 16, pp.11169-11186, (1996).

[15] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamic and conjugate gradients,, Rev. Mod. Phys., vol. 64, p.1045, (1992).

[16] J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple,, Phys. Rev. Lett., vol. 77, no. 18, pp.3865-3868, (1996).

[17] J.K. Nørskov, Electron structure of single and interacting hydrogen impurities in free-electron-like metals.,, Phys. Rev. B, vol. 20, no. 2, pp.446-454, (1979).

[18] X.W. Zhou and J.A. Zimmerman, An Embedded-Atom Method interatomic potential for Pd–H alloys.,, J. Mater. Res., vol. 23, pp.704-718, (2008).

[19] J.M. Zhang and G.Y. Guo, Microscopic theory of the shape memory effect in TiNi,, Phys. Rev. Letters, vol. 78, pp.4789-4792, (1997).

[20] M.J. Mehl and B.M. Klein, First principles calculations of elastic properties of metals,, Intermetallic Compounds, vol. 1, pp.1-26, (1994).

[21] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht and P.C. Schmidt, Ab-Initio calculation of the elastic constants and thermal expansion coefficients of laves phases,, Intermetallics, vol. 11, no. 1, pp.23-32, (2003).

Fetching data from Crossref.
This may take some time to load.