Microstructure Characterization of In Situ Ti-TiB Metal Matrix Composites Prepared by Powder Metallurgy Process

Abstract:

Article Preview

Metal matrix composites (MMCs) are the new generation materials that combine both the metallic properties (ductility and toughness) and ceramic characteristics (high strength and modulus), leading to higher strength in shear and compression, at higher service temperatures. Titanium matrix composites possess light weight, high strength and good corrosion resistance and are used as structural materials in automobiles and aerospace industries. In the present study, in situ Ti-TiB composites were fabricated by reinforcing (2, 5, 10 and 20 wt. %) TiB2 powder (mean size <10 microns) into titanium powder (mean particle size ~26.58 μm) and subsequently consolidated by vacuum sintering at 1300 °C for 3 h. X-ray diffraction, scanning electron microscopy (SEM) and density measurements were carried out to characterize the prepared composites. The results showed that all compositions led to high density composites, and the hardness of the composites increased with an increase in the amount of reinforcement. The mechanism of vacuum sintering is yet to be understood in the consolidation of composites and the detailed evolution of microstructure needs to be analysed.

Info:

Periodical:

Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen

Pages:

25-30

Citation:

H. Singh et al., "Microstructure Characterization of In Situ Ti-TiB Metal Matrix Composites Prepared by Powder Metallurgy Process", Key Engineering Materials, Vol. 770, pp. 25-30, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] K. B. Panda and K. S. Ravi Chandran, Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties, Metallurgical and Materials Trans. A. 34 (2003) 1371-1385.

DOI: https://doi.org/10.1007/s11661-003-0249-z

[2] J. Breme, E. Eisenbarth, and V. Biehl, Titanium and its Alloys for Medical Applications, in Titanium and Titanium Alloys, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp.423-451.

DOI: https://doi.org/10.1002/3527602119.ch16

[3] K. Geng, W. Lu, Y. Qin, and D. Zhang, In situ preparation of titanium matrix composites reinforced with TiB whiskers and Y2O3 particles, Mat. Resea. Bull. 39 (2004) 873-879.

DOI: https://doi.org/10.1016/j.materresbull.2003.11.008

[4] W. J. Lu, L. Xiao, K. Geng, J. N. Qin, and D. Zhang, Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique, Materials Charac. 59 (2008) 912-919.

DOI: https://doi.org/10.1016/j.matchar.2007.07.016

[5] T. M. T. Godfrey, P. S. Goodwin, and C. M. Ward­Close, Production of titanium particulate metal matrix composite by mechanical milling, Materials Sci. and Tech. 16 (2000) 753-758.

DOI: https://doi.org/10.1179/026708300101508757

[6] K. Kondoh, 16 - Titanium metal matrix composites by powder metallurgy (PM) routes A2 - Qian, Ma, in Titanium Powder Metallurgy, F. H. Froes, Ed., ed Boston: Butterworth-Heinemann, 2015, pp.277-297.

DOI: https://doi.org/10.1016/b978-0-12-800054-0.00016-2

[7] S. C. Tjong and Y.-W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites, Composites Science and Tech. 68 (2008) 583-601.

DOI: https://doi.org/10.1016/j.compscitech.2007.07.016

[8] Y. Xiong, W. Wang, R. Jiang, K. Lin, and G. Song, Surface integrity of milling in-situ TiB2 particle reinforced Al matrix composites, International Journal of Refractory Metals and Hard Materials. 54 (2016) 407-416.

DOI: https://doi.org/10.1016/j.ijrmhm.2015.09.007

[9] Z. Zhang, X. Shen, F. Wang, and S. Lee, A New Rapid Route for In Situ Synthesizing Monolithic TiB Ceramic, Journal of the American Ceramic Soci. 94 (2011) 2754-2756.

DOI: https://doi.org/10.1111/j.1551-2916.2011.04694.x

[10] S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, et al.,Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Materials & Desi. 95 (2016) 127-132.

DOI: https://doi.org/10.1016/j.matdes.2016.01.092

[11] Z. Y. Ma, S. C. Tjong, and L. Gen, In-situ Ti-TiB metal–matrix composite prepared by a reactive pressing process, Scripta Materi. 42 (2000) 367-373.

DOI: https://doi.org/10.1016/s1359-6462(99)00354-1

[12] D. X. Li, D. H. Ping, Y. X. Lu, and H. Q. Ye, Characterization of the microstructure in TiB-whisker reinforced Ti alloy matrix composite, Materials Lett.16 (1993) 322-326.

DOI: https://doi.org/10.1016/0167-577x(93)90201-8

[13] J. Zhang, W. Ke, W. Ji, Z. Fan, W. Wang, and Z. Fu, Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites, Materials Sci. and Engg. A. 648 (2015)158-163.

DOI: https://doi.org/10.1016/j.msea.2015.09.067

[14] C. J. Zhang, F. T. Kong, S. L. Xiao, E. T. Zhao, L. J. Xu, and Y. Y. Chen, Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements, Materials Sci. and Engg.: A.548 (2012).

DOI: https://doi.org/10.1016/j.msea.2012.04.004

[15] Y. Zhang, J. Sun, and R. Vilar, Characterization of (TiB + TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition, Journal of Mater. Proces. Tech. 211 (2011)597-601.

DOI: https://doi.org/10.1016/j.jmatprotec.2010.11.009

[16] H. J. Brinkman, J. Duszczyk, and L. Katgerman, In-situ formation of TiB2 in a PM aluminum matrix, Scripta Materialia. 37 (1997) 293-297.

DOI: https://doi.org/10.1016/s1359-6462(97)00111-5

[17] S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB, Materials Sci. and Engg. A. 628 (2015) 75-83.

DOI: https://doi.org/10.1016/j.msea.2015.01.033