Optimization of Milling Parameters for Titanium Alloys Based on Support Vector Machine (Machine Learning) and Ant Colony Optimization Algorithm


Article Preview

In this paper, the titanium alloy milling process is analysized by finite element method, and the processing quality of this materials will be affected by the milling force. A milling force prediction model was established based on support vector machine (SVM) and ant colony optimization (ACO) for titanium alloy milling process cutting parameters. The main feature of this model design methodology is to hybridize the solution construction mechanism of ant colony optimization (ACO) with support vector machine (SVM) regression based on HYPERLINK "https://cn.mathworks.com/discovery/supervised-learning.html" supervised learning algorithm. The results show that this methodology is very efficient, and thus can be used in the machining process parameters optimum and other material processing fields.



Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen




X. X. Zhang et al., "Optimization of Milling Parameters for Titanium Alloys Based on Support Vector Machine (Machine Learning) and Ant Colony Optimization Algorithm", Key Engineering Materials, Vol. 770, pp. 262-267, 2018

Online since:

May 2018




* - Corresponding Author

[1] G. Q. Xiang and T. Lu: Machine Tool & Hydraulics, Vol. 44 (3) (2016), p.142.

[2] N. Elmagrabi, C. H. Che Hassan and A. G. Jaharah: Eur. J. Sci. Res. Vol. 22( 2) (2008), p.153.

[3] Y. L. Qi, J. Deng and Q. Hong: Mat. Sci. Eng. Vol. 280 (1) (2000), p.177.

[4] T. Özel, M. Sima, A. K. Srivastava and B. Katanoglu: CIRP Ann. Manuf. Techn. Vol. 59 (1) (2010), p.77.

[5] I. N. Tansel, S. Gülmez and M. Demetgul: Expert. Syst. Appl. Vol. 38 (5) (2011), p.4780.

[6] C. J. Li, D. B. Tang, H. He and X.Q. Cheng: Mech. Sci. Tech. Aero. Eng. Vol. 32 (4) (2013),p.469.

[7] B. H. Wu, X. Yan, M. Luo and G. Gao: Chin. J. Aero. Vol. 26 (4) (2013), p.1057.

[8] M. Dorigo and L. M. Gambardella: IEEE Trans. Evol. Comput. Vol. 1 (1997), p.53.

[9] M. Dorigo, V.Maniezzo and A.Colorni: IEEE T. Syst. Man Cy. B Vol. 26 (1996), p.29.

[10] J. E. Bell and P. R. McMullen: Adv. Eng. Informat. Vol. 18 (2004), p.41.

[11] V. N. Vapnik, The nature of statistical learning theory. New York: Springer, 2000, p.138.

[12] X. Q. Bian, B. Han, Z. M. Dua, J. N. Jaubert and M.J. Li: Fuel, Vol. 182 (2016), p.550.

[13] W. C. Hong: Neurocomputing, Vol. 74 (2011), p. (2096).

[14] A.Y. Cheng, X. Jian, Y. F Li, C. Zhang and H. Zhua: Physica A, Vol. 466 (2017), p.422.

Fetching data from Crossref.
This may take some time to load.