Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Al-Ti Powders

Abstract:

Article Preview

This paper focuses on the microstructural characterization of Al25Ti75, Al37Ti63, Al50Ti50, Al63Ti37 and Al75Ti25 powders mixtures prepared by mechanical alloying (MA). The high-energy ball-milling, up to 75 h, of aluminium and titanium powders leads to a nanocrystalline or an amorphous structure. It is showed that a stable amorphous Al–Ti phase with uniform elemental distribution forms after 50 h of milling in Al50Ti50 alloy. Heat treatment of the different alloys leads to the crystallization of AlTi3, AlTi, Al2Ti and Al3Ti intermetallic compounds. A comprehensive study by laser granulometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) was carried out on the structure, surface morphology and thermal behaviour of the MA Al-Ti mixtures, both of milled and heat treated powders.

Info:

Periodical:

Edited by:

Takashi Amemiya, Xuelin Lei and Xiong Qi Peng

Pages:

118-122

Citation:

P. Urban et al., "Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Al-Ti Powders", Key Engineering Materials, Vol. 772, pp. 118-122, 2018

Online since:

July 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] W. Klement, R. H. Wilens, P. Duwez, Nature, 187 (1960] 869-870.

[2] A. Inoue, Progress in Materials Science, 43 (1998] 365-520.

[3] C. Suryanarayana, Progress in Materials Science, 46 (2001] 1-184.

[4] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J. D. Paul, Adv. Eng. Mater., 2 (2000] 699–720.

DOI: https://doi.org/10.1002/1527-2648(200011)2:11<699::aid-adem699>3.3.co;2-a

[5] J. Aguilar, A. Schievenbusch, O. Kättlitz, Intermetallics, 19 (2011] 757–761.

[6] P.C. Priarone, S. Rizzuti, L. Settineri, G. Vergnano, J. Mater. Process. Technol., 212 (2012] 2619–2628.

[7] T. Tetsui, T. Kobayashi, T. Mori, T. Kishimoto, H. Harada, Mater. Trans., 51 (2010] 1656.

[8] J. Lapin, Z. Gabalcová, Intermetallics, 19 (2011] 797–804.

[9] W. Guo, A. Iasonna, M. Magini, S. Martelli, F. Padella, J. Mater. Sci., 29 (1994] 2436-2444.

[10] B. S. Murty, M. D. Naik, S. Ranganathan, M. Mohan Rao, Mater. Forum, 16 (1992] 19-26.

[11] L. Schultz, Mater. Sci. and Eng., 97 (1988] 15-23.

[12] W. Guo, S. Martelli, N. Burgio, M. Magini, F. Padella, E. Paradiso, I. Soletta, J. Mater. Sci., 26 (1991] 6190-6196.

DOI: https://doi.org/10.1007/bf01113903

[13] M. Sherif El-Eskandarany, J. Alloy Compd, 234 (1996] 67-82.

[14] S.I. Talabi, S. Oluropo, A. Funsho, I. Na'Allah, S. Abdulkareem, International Journal of Metals, Volume 2013 (2013), Article ID 127106.

[15] J.B. Al-Dabbagh, R. Mohd, M. Ishak, S. Aisyah, Int. J. Nanoelectronics and Materials, 8 (2015) 23-32.