Absorption Spectra Analysis of Er3+-Doped TeO2-ZnO-Bi2O3 Glasses


Article Preview

Absorption spectra of different composition of tellurite glasses were analyzed in order to estimate their lasing properties. Composition of the investigated tellurite glasses are: 55TeO2-(43-x)ZnO-2Bi2O3-xEr2O3 (x = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mol%). Glasses absorption spectra and density were measured at room temperature using UV-VIS-NIR Spectrophotometer and pycnometer, respectively; while their refractive index were measured by implying Brewster’s angle method. Lasing performance of glasses were then analyzed using Judd-Ofelt theory in order to obtain line strength (S), Judd-Ofelt parameters (Ωt, t = 1, 2, 3), and radiative life-times (τ). It is seen that incorporating Er3+ ions of up to 2.5 mol% resulted in decreasing the radiative lifetime of electrons sitting at 4I11/2. From Judd-Ofelt parameters analysis it can be concluded that these tellurite glasses tend to have the covalence nature of Er-O bond and thus represents the asymmetry around the Er3+ ions site.



Edited by:

Takashi Amemiya, Xuelin Lei and Xiong Qi Peng




A. Marzuki et al., "Absorption Spectra Analysis of Er3+-Doped TeO2-ZnO-Bi2O3 Glasses", Key Engineering Materials, Vol. 772, pp. 85-89, 2018

Online since:

July 2018




* - Corresponding Author

[1] A. P. Savikin, I.A. Grishin, V.V. Sharkov and A.V. Budruev: J. Solid State Chem. Vol. 207 (2013), pp.80-86.

[2] S. Marjanovic, J. Toulouse, H. Jain, C. Sandmann, V. Dierolf, A.R. Kortan, N. Kopylov and R.G. Ahrens: J. Non-Cryst. Solids Vol. 322 (1–3) (2003), pp.311-318.

DOI: https://doi.org/10.1016/s0022-3093(03)00278-3

[3] S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang and L. Hu: J. Lumin. Vol. 117 (1) (2006), pp.39-45.

[4] P. Nandi and G. Jose: Opt. Commun. Vol. 265 (2) (2006), pp.588-593.

[5] S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, A. Arib, M.A. Hussein, S. Wageh and L.A. Dim: J. Alloys Compd. Vol. 741 (2018), pp.293-299.

DOI: https://doi.org/10.1016/j.jallcom.2018.01.109

[6] V.V. Vitkin, V.M. Polyakov, A.A. Kharitonov, V.A. Buchenkov, A.Y. Rodionov, A.A. Zhilin, O.S. Dymshits and P.A. Loiko: Laser Phys. Vol. 26 (12) (2016), p.125801.

DOI: https://doi.org/10.1088/1054-660x/26/12/125801

[7] A. Marzuki, W. Wahyudi and A. Pramuda: Mater Sci. Forum Vol. 904 (2017), pp.98-101.

[8] F. Chen, T. Xu, S. Dai, Q. Nie, X. Shen, J. Zhang and X. Wang: Opt. Mater. Vol. 32 (2010), p.868–872.

[9] A. Marzuki and D. E. Fausta: IOP Conf. Ser. Mater. Sci. Eng Vol. 333 (2018), p.012015.

[10] A.P. Savikin, I.A. Grishin, V.V. Sharkov and A.V. Budruev: J. Solid State Chem. Vol. 207 (2013), pp.80-86.

[11] A. Maaoui, M. Haouari, A. Bulou, B. Boulard, H. Ben Ouada: J. Lumin. Vol. 196 (2018), pp.1-10.

[12] P. Nandi and G. Jose: Opt. Commun. Vol. 265 (2) (2006), pp.588-593.

[13] B. R. Judd: Phys. Rev. Vol. 127 (1962), pp.750-761.

[14] G.S. Ofelt: J. Phys. Chem. Vol. 37 (1962) pp.511-520.

[15] Z.A.S. Mahraz, M.R. Sahar and S.K. Ghoshal: J. Alloys Compd. Vol. 740 (2018), pp.617-625.

[16] T. Xue, C. Huang, L. Wang, Y. Li, Y. Liu, D. Wu, M. Liao and L. Hu: Opt. Mater. 77 (2018), pp.117-121.

[17] E.S. Sazali, M. R. Sahara and M. S. Rohani: Mater. Today Vol. 2 (2015), p.5241 – 5245.

[18] F. Ren, Y.Z. Mei, C. Gao, L.G. Zhu and A.X. Lu: Trans. Nonferrous Met. Soc. China Vol. 22 (8) (2012), p.2021-(2026).

[19] J.F. Gomes, A.M.O. Lima, M. Sandrini, A.N. Medina, A. Steimacher, F. Pedrochi and M.J. Barboza: Opt. Mater. Vol. 66 (2017), pp.211-219.

[20] A.A. Assadi, K. Damak, R. Lachheb, A. Herrmann, E. Yousef, C. Rüssel and R. Maâlej: J. Alloys Compd. 620 (2015), pp.129-136.

Fetching data from Crossref.
This may take some time to load.