Bending Fatigue Behavior of 7075-Aluminum Alloy

Abstract:

Article Preview

Light alloys are a very interesting challenge in order to have light components with high mechanical features. One of these is the 7075 aluminum alloy, which is commonly employed in aeronautic, automotive and maritime fields.On the other hand, the application of a PVD (Physical Vapor Deposition) coating can improve the hardness of the surface and the tribological properties of the component.The effectiveness of these coatings on the fatigue behavior of the sublayer material is not already clear. For this reason, bending tests on uncoated and coated specimens in air were performed in order to evaluate the S-N diagrams

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

1-6

Citation:

E. V. Arcieri et al., "Bending Fatigue Behavior of 7075-Aluminum Alloy", Key Engineering Materials, Vol. 774, pp. 1-6, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] J. Hirsch, Aluminium in Innovative Light-Weight Car Design,, Materials Transactions 52(5): 818-24, (2011).

[2] S. Lomolino, R. Tovo, J. dos Santos, On the fatigue behaviour and design curves of friction stir butt-welded Al alloys,, International Journal of Fatigue 27: 305-16, (2005).

DOI: https://doi.org/10.1016/j.ijfatigue.2004.06.013

[3] S. Baragetti, G. D'Urso, Aluminum 6060-T6 friction stir welded butt joints: fatigue resistance with different tools and feed rates,, Journal of Mechanical Science and Technology 28(3): 867-77, (2014).

DOI: https://doi.org/10.1007/s12206-013-1152-1

[4] M. Kumar, N. Sotirov, C.M. Chimani, Investigations on warm forming of AW-7020-T6 alloy sheet,, J. Mater. Process. Technol. 214:1769-76, (2014).

DOI: https://doi.org/10.1016/j.jmatprotec.2014.03.024

[5] B.F. Brown: Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys. Washington D.C., Naval Research Lab, (1972).

[6] G. Silva, B. Rivolta, R. Gerosa, and U. Derudi, Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C,, Journal of Materials Engineering and Performance 22(1): 210–214, (2013).

DOI: https://doi.org/10.1007/s11665-012-0221-4

[7] K. K. Sankaran, R. Perez, and K. V. Jata, Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies,, Materials Science and Engineering A 297(1–2): 223–229, (2001).

DOI: https://doi.org/10.1016/s0921-5093(00)01216-8

[8] R. H. Oskouei and R. N. Ibrahim, The effect of a heat treatment on improving the fatigue properties of aluminium alloy 7075-T6 coated with TiN by PVD,, Procedia Engineering 10: 1936–1942, (2011).

DOI: https://doi.org/10.1016/j.proeng.2011.04.321

[9] E. S. Puchi-Cabrera, M. H. Staia, J. Lesage, L. Gil, C. Villalobos-Gutiérrez, J. La Barbera- Sosa, E. a. Ochoa-Pérez, and E. Le Bourhis, Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD,, International Journal of Fatigue 30: 1220–1230, (2008).

DOI: https://doi.org/10.1016/j.surfcoat.2012.04.087

[10] B. S. Saini and V. K. Gupta, Effect of WC / C PVD coating on fatigue behaviour of case carburized SAE8620 steel,, Surf. Coat. Technol. 205(2): 511–518, (2010).

DOI: https://doi.org/10.1016/j.surfcoat.2010.07.022

[11] S. Baragetti, M. Gelfi, G. M. La Vecchia, and N. Lecis, Fatigue resistance of CrN thin films deposited by arc evaporation process on H11 tool steel and 2205 duplex stainless steel,, Fatigue Fract. Eng. Mater. Struct. 28(7): 615–621, (2005).

DOI: https://doi.org/10.1111/j.1460-2695.2005.00905.x

[12] S. Baragetti, R. Gerosa, F. Villa, Analisi degli effetti di rivestimenti PVD sul comportamento a fatica di provini in lega 7075-T6 in ambiente aggressivo,, 43rd AIAS Conference Proceedings, Rimini, 9-12 Sept. (2014).

[13] S. Baragetti, R. Gerosa, F. Villa, Fatigue behaviour of DLC coated Al 7075-T6 alloy in an aggressive mixture,, Key Eng. Mat. 627:81-4, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/kem.627.81

[14] S. Baragetti, R. Gerosa, F. Villa, Light alloys structural behaviour in severe environmental conditions", Key Eng. Mat. 665:37-40, (2016).

DOI: https://doi.org/10.4028/www.scientific.net/kem.665.37

[15] S. Baragetti, R. Gerosa, F. Villa, Effects of PVD DLC Coating on 7075-T6 Fatigue Strength at High and Low Number of Cycles,, Key Eng. Mat. 713:50-3, (2016).

DOI: https://doi.org/10.4028/www.scientific.net/kem.713.50

[16] ISO 1143:2010 Standard. Metallic materials — Rotating bar bending fatigue testing, (2010).

[17] Lafer S.p.A., Lafer website,, 2016. [Online]. Available: www.lafer.eu. [Accessed: 20-Jan-2016].

[18] Matweb, Matweb website,, 2015. [Online]. Available: www.matweb.com. [Accessed: 20-Jan-2016].

[19] T. Nicholas, Step loading for very high cycle fatigue Fatigue,, Fract. Eng. Mater. Struct. 25: 861-9, (2002).

[20] R. S. Bellows, S. Muju, T. Nicholas, Validation of the step test method for generating Haigh diagrams for Ti-6Al-4V,, Int. J. Fatigue 21: 687-97, (1999).

DOI: https://doi.org/10.1016/s0142-1123(99)00032-8

[21] S. Baragetti, L. Lusvarghi, G. Bolelli, and F. Tordini, Fatigue behaviour of 2011-T6 aluminium alloy coated with PVD WC/C, PA-CVD DLC and PE-CVD SiOx coatings,, Surf. Coatings Technol. 203(20–21):3078–87, (2009).

DOI: https://doi.org/10.1016/j.surfcoat.2009.03.040

[22] S. Baragetti, R. Gerosa, and F. Villa, Fatigue Behaviour of Thin Coated Al 7075 Alloy with Low Temperature PVD Coatings,, Key Eng. Mater. 577–578:221–4, (2013).

DOI: https://doi.org/10.4028/www.scientific.net/kem.577-578.221

[23] S. Baragetti, R. Gerosa, and F. Villa, WC/C Coating Protection Effects on 7075-T6 Fatigue Strength in an Aggressive Environment,, Procedia Eng. 74:33–6, (2014).

DOI: https://doi.org/10.1016/j.proeng.2014.06.219

Fetching data from Crossref.
This may take some time to load.