Mechanical Response and Damage of Woven Composite Materials Reinforced with Fique

Abstract:

Article Preview

In this paper, we present the experimental and numerical modelling for the mechanical behaviour of woven composites reinforced with fique (furcraea selloa) fibre, for different fique fibre woven configurations embed in an R744 epoxy matrix. The woven configurations are taken from commercial models and their mechanical properties validated by experimental data. We perform experimental tests using ASTM D3039 for the tensile response. We obtain values for Young’s modulus, ultimate strength, and deformation of unidirectional and woven reinforced composites. Scanning electron microscopy (SEM) is used for the fractographic analysis of the reinforced specimens. For the numerical model of the woven composite, we use the Texgen software to define the finite element voxel model and to estimate orthotropic mechanical parameters. Then, we determine the equivalent elastic properties of the composite, according to the materials and the fibre-matrix relations. We compare and validate the numerical results with the experimental data. We obtain stress and strain fields for the yarns and the matrix. The objective of this work is to establish a baseline of the mechanical behaviour of these natural reinforced composites to propose applications for structural engineering.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

143-148

Citation:

O. A. González-Estrada et al., "Mechanical Response and Damage of Woven Composite Materials Reinforced with Fique", Key Engineering Materials, Vol. 774, pp. 143-148, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] K. L. Pickering, M. G. G. A. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance,, Composites Part A: Applied Science and Manufacturing, vol. 83. p.98–112, Apr-(2016).

DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

[2] M. F. Contreras, W. A. Hormaza, and A. Marañón, Fractografía De La Fibra Natural Extraida Del Fique Y De Un Material Compuesto Reforzado Con Tejido De Fibra,, Rev. Latinoam. Metal. y Mater., vol. 1, no. 1, p.57–67, (2009).

[3] S. Gómez, B. B. Ramón, and R. Guzman, Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers,, Rev. UIS Ing., vol. 17, no. 1, p.43–50, (2018).

DOI: https://doi.org/10.18273/revuin.v17n1-2018004

[4] M. A. Hidalgo-Salazar, M. F. Muñoz, and J. H. Mina, Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers,, Int. J. Polym. Sci., vol. 2015, no. 386325, p.1–8, (2015).

DOI: https://doi.org/10.1155/2015/386325

[5] J. C. Posada-correa, L. Y. Jaramillo-zapata, P. A. Villegas-bolaños, L. A. García, and C. A. Vargas-isaza, Estudio comparativo de negro de humo y alúmina como cargas reforzantes en mezclas de caucho natural,, Rev. UIS Ing., vol. 13, no. 2, p.59–67, (2014).

[6] L. Yan, B. Kasal, and L. Huang, A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,, Composites Part B: Engineering, vol. 92. p.94–132, (2016).

DOI: https://doi.org/10.1016/j.compositesb.2016.02.002

[7] Y. Zhou, M. Fan, and L. Chen, Interface and bonding mechanisms of plant fibre composites: An overview,, Compos. Part B Eng., vol. 101, p.31–45, Sep. (2016).

DOI: https://doi.org/10.1016/j.compositesb.2016.06.055

[8] E. Omrani, P. L. Menezes, and P. K. Rohatgi, State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world,, Eng. Sci. Technol. an Int. J., vol. 19, no. 2, p.717–736, Jun. (2016).

DOI: https://doi.org/10.1016/j.jestch.2015.10.007

[9] F. P. La Mantia and M. Morreale, Green composites: A brief review,, Compos. Part A Appl. Sci. Manuf., vol. 42, no. 6, p.579–588, (2011).

[10] X. F. Wang, X. W. Wang, G. M. Zhou, and C. W. Zhou, Multi-scale Analyses of 3D Woven Composite Based On Periodicity Boundary Conditions,, J. Compos. Mater., vol. 41, no. 14, p.1773–1788, (2007).

DOI: https://doi.org/10.1177/0021998306069891

[11] H. Lin, L. P. Brown, and A. C. Long, Modelling and Simulating Textile Structures Using TexGen,, Adv. Mater. Res., vol. 331, p.44–47, (2011).

DOI: https://doi.org/10.4028/www.scientific.net/amr.331.44

[12] M. Sherburn, Geometric and Mechanical Modelling of Textiles,, University of Nottingham, (2007).

[13] S. Dai and P. R. Cunningham, Multi-scale damage modelling of 3D woven composites under uni-axial tension,, Compos. Struct., vol. 142, p.298–312, May (2016).

DOI: https://doi.org/10.1016/j.compstruct.2016.01.103

[14] A. Dixit, H. S. Mali, and R. K. Misra, Unit cell model of woven fabric textile composite for multiscale analysis,, in Procedia Engineering, 2013, vol. 68, p.352–358.

DOI: https://doi.org/10.1016/j.proeng.2013.12.191

[15] H. Lin, M. Sherburn, J. Crookston, A. C. Long, M. J. Clifford, and I. A. Jones, Finite element modelling of fabric compression,, Model. Simul. Mater. Sci. Eng., vol. 16, no. 3, p.35010, Jan. (2008).

DOI: https://doi.org/10.1088/0965-0393/16/3/035010

[16] O. A. González-Estrada, J. Leal Enciso, and J. D. Reyes Herrera, Análisis de integridad estructural de tuberías de material compuesto para el transporte de hidrocarburos por elementos finitos,, Rev. UIS Ing., vol. 15, no. 2, p.105–116, Jan. (2016).

DOI: https://doi.org/10.18273/revuin.v15n2-2016009

[17] S. V. Lomov et al., Textile composites: Modelling strategies,, Compos. - Part A Appl. Sci. Manuf., vol. 32, no. 10, p.1379–1394, (2001).

[18] S. V Lomov, E. Bernal, D. S. Ivanov, S. V Kondratiev, and I. Verpoest, Homogenisation of a sheared unit cell of textile composites,, Rev. Eur. des Éléments Finis, vol. 14, no. 6–7, p.709–728, (2005).

DOI: https://doi.org/10.3166/reef.14.709-728

[19] M. Ansar, W. Xinwei, and Z. Chouwei, Modeling strategies of 3D woven composites: A review,, Compos. Struct., vol. 93, no. 8, p.1947–1963, (2011).

DOI: https://doi.org/10.1016/j.compstruct.2011.03.010

[20] M. A. Camargo Mendez and D. F. Garcia Alfonzo, Material compuesto de matriz polimerica reforzado con fibras naturales para la fabricacion de tenso-estructuras,, Universidad industrial de Santander, (2017).

[21] C. Lozano Tafur, Deformación y fractura de una resina epóxica reforzada con fibra de algodón,, Universidad Nacional de Colombia, Bogota, Colombia, (2016).

[22] S. N. Monteiro, F. P. D. Lopes, A. P. Barbosa, A. B. Bevitori, I. L. Amaral Da Silva, and L. L. Da Costa, Natural lignocellulosic fibers as engineering materials-An overview,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 42, no. 10, p.2963–2974, (2011).

DOI: https://doi.org/10.1007/s11661-011-0789-6

[23] M. Hughes, J. Carpenter, and C. Hill, Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites,, J. Mater. Sci., vol. 42, no. 7, p.2499–2511, Mar. (2007).

DOI: https://doi.org/10.1007/s10853-006-1027-2

[24] A. Doitrand, C. Fagiano, V. Chiaruttini, F. H. Leroy, A. Mavel, and M. Hirsekorn, Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven polymer matrix composites under quasi-static tensile loading,, Compos. Sci. Technol., vol. 119, p.1–11, Nov. (2015).

DOI: https://doi.org/10.1016/j.compscitech.2015.09.015

Fetching data from Crossref.
This may take some time to load.