Damage Assessment of Spinal Bones due to Prostate Cancer

Abstract:

Article Preview

The present research proposes a methodology to determine the strength of a spinal bone in patients who suffer from prostate cancer using diagnostic imaging, with the purpose of verifying if metastasis has occurred, and critical conditions have been reached. Advanced numerical methods allow the modelling of anisotropic materials for different applications in biomedical engineering. The computed tomography images (CAT) provide the information to create a 3D model of the bone, in this case, the lumbar vertebra L5. Using segmentation software, it is possible to identify the mechanical properties of the materials that form the bone and define anisotropic conditions. The 3D anisotropic model is evaluated using finite element analysis (FEA), considering the appropriate boundary conditions and its respective material properties, and compared with the reference case of a healthy bone in an initial stage to assess the damage. Indicators based on the changes in stiffness of the vertebra could provide evidence of the need for chirurgical intervention.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

149-154

Citation:

S. A. A. Parra et al., "Damage Assessment of Spinal Bones due to Prostate Cancer", Key Engineering Materials, Vol. 774, pp. 149-154, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] M. W. Layton, S. A. Goldstein, R. W. Goulet, L. A. Feldkamp, D. J. Kubinski, and G. G. Bole, Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography,, Arthritis Rheum., vol. 31, no. 11, p.1400–1405, Nov. (1988).

DOI: https://doi.org/10.1002/art.1780311109

[2] E. Avrahami, R. Tadmor, O. Dally, and H. Hadar, Early MR Demonstration of Spinal Metastases in Patients with Normal Radiographs and CT and Radionuclide Bone Scans,, J. Comput. Assist. Tomogr., vol. 13, no. 4, p.598–602, Jul. (1989).

DOI: https://doi.org/10.1097/00004728-198907000-00008

[3] S. Schievano et al., Percutaneous Pulmonary Valve Implantation Based on Rapid Prototyping of Right Ventricular Outflow Tract and Pulmonary Trunk from MR Data,, Radiology, vol. 242, no. 2, p.490–497, (2007).

DOI: https://doi.org/10.1148/radiol.2422051994

[4] F. Valencia, C. Mejía, and V. Erazo, Desarrollo de una prótesis de rodilla para amputaciones transfemorales usando herramientas computacionales,, Rev. UIS Ing., vol. 16, no. 2, p.23–34, (2017).

DOI: https://doi.org/10.18273/revuin.v16n2-2017002

[5] W. C. C. Lee, M. Zhang, X. Jia, and J. T. M. Cheung, Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,, Med. Eng. Phys., vol. 26, no. 8, p.655–662, (2004).

DOI: https://doi.org/10.1016/j.medengphy.2004.04.010

[6] E. Nadal Soriano, M. J. Rupérez, S. Martínez Sanchis, C. Monserrat Aranda, M. Tur, and F. J. Fuenmayor, Evaluación basada en el método del gradiente de las propiedades elásticas de tejidos humanos in vivo,, Rev. UIS Ing., vol. 16, no. 1, p.15.

DOI: https://doi.org/10.18273/revuin.v16n1-2017002

[7] D. Vanel, J. Bittoun, and A. Tardivon, MRI of bone metastases,, Eur. Radiol., vol. 8, no. 8, p.1345–1351, Sep. (1998).

DOI: https://doi.org/10.1007/s003300050549

[8] J. P. Karr, Prostate Cancer in the United States and Japan,, in Prostate Cancer and Bone Metastasis. Advances in Experimental Medicine and Biology, vol 324, J. P. Karr and H. Yamanaka, Eds. Boston, MA: Springer, 1992, p.17–28.

DOI: https://doi.org/10.1007/978-1-4615-3398-6_3

[9] J. Schaberg and B. J. Gainor, A Profile of Metastatic Carcinoma of the Spine,, Spine (Phila. Pa. 1976)., vol. 10, no. 1, p.19–20, Jan. (1985).

DOI: https://doi.org/10.1097/00007632-198501000-00003

[10] G. R. Mundy, Metastasis to bone: Causes, consequences and therapeutic opportunities,, Nat. Rev. Cancer, vol. 2, no. 8, p.584–593, (2002).

DOI: https://doi.org/10.1038/nrc867

[11] H. E. Daldrup-Link et al., Whole-Body MR Imaging for Detection of Bone Metastases in Children and Young Adults,, Am. J. Roentgenol., vol. 177, no. 1, p.229–236, (2001).

[12] F. E. Lecouvet et al., Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies,, J. Clin. Oncol., vol. 25, no. 22, p.3281–3287, (2007).

DOI: https://doi.org/10.1200/jco.2006.09.2940

[13] H. Schirrmeister et al., Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography,, J. Clin. Oncol., vol. 17, no. 8, p.2381–9, (1999).

DOI: https://doi.org/10.1200/jco.1999.17.8.2381

[14] A. M. Pham, A. A. Rafii, M. C. Metzger, A. Jamali, and E. B. Strong, Computer modeling and intraoperative navigation in maxillofacial surgery,, Otolaryngol. - Head Neck Surg., vol. 137, no. 4, p.624–631, (2007).

DOI: https://doi.org/10.1016/j.otohns.2007.06.719

[15] D. J. Halazonetis, From 2-dimensional cephalograms to 3-dimensional computed tomography scans,, American Journal of Orthodontics and Dentofacial Orthopedics, vol. 127, no. 5. p.627–637, (2005).

DOI: https://doi.org/10.1016/j.ajodo.2005.01.004

[16] J. Y. Rho, M. C. Hobatho, and R. B. Ashman, Relations of mechanical properties to density and CT numbers in human bone,, Med. Eng. Phys., vol. 17, no. 5, p.347–355, Jul. (1995).

DOI: https://doi.org/10.1016/1350-4533(95)97314-f

[17] J. H. Keyak, J. M. Meagher, H. B. Skinner, and C. D. Mote, Automated three-dimensional finite element modelling of bone: a new method,, J. Biomed. Eng., vol. 12, no. 5, p.389–397, Sep. (1990).

DOI: https://doi.org/10.1016/0141-5425(90)90022-f

[18] E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti, Subject-specific finite element models can accurately predict strain levels in long bones,, J. Biomech., vol. 40, no. 13, p.2982–2989, (2007).

DOI: https://doi.org/10.1016/j.jbiomech.2007.02.010

[19] V. K. Goel, W. Kong, J. S. Han, J. N. Weinstein, and L. G. Gilbertson, A Combined Finite Element and Optimization Investigation of Lumbar Spine Mechanics With and Without Muscles,, Spine (Phila. Pa. 1976)., vol. 18, no. 11, p.1531–1541, Sep. (1993).

DOI: https://doi.org/10.1097/00007632-199318110-00019

[20] H. G. Sánchez Acevedo, J. Uscátegui, and S. Gómez, Metodología para la detección de fallas en una estructura entramada metálica empleando las técnicas de análisis modal y PSO,, Rev. UIS Ing., vol. 16, no. 2, p.43–50, (2017).

DOI: https://doi.org/10.18273/revuin.v16n2-2017004

[21] J. D. Tobin, K. M. Fox, M. L. Cejku, T. A. Roy, R. S. Epstein, and C. C. Plato, Bone density changes in normal men: a 4–19 year longitudinal study,, J. Bone Miner. Res., vol. 8, no. suppl 1, p. S142, (1993).

[22] T. Suzuki, T. Shimizu, K. Kurokawa, H. Jimbo, J. Sato, and H. Yamanaka, Pattern of prostate cancer metastasis to the vertebral column.,, Prostate, vol. 25, no. 3, p.141–146, (1994).

DOI: https://doi.org/10.1002/pros.2990250305

[23] J. M. Ford and S. J. Decker, Computed tomography slice thickness and its effects on three-dimensional reconstruction of anatomical structures,, J. Forensic Radiol. Imaging, vol. 4, p.43–46, Mar. (2016).

DOI: https://doi.org/10.1016/j.jofri.2015.10.004

Fetching data from Crossref.
This may take some time to load.