Damage in Fibreglass Composite Laminates Used for Pipes


Article Preview

In this work, we present a model for the initiation and evolution of damage for a composite fibre-reinforced pipe used in the Oil & Gas industry, based on a commercially available pipe. A continuum damage mechanics model was employed to determine the initiation and evolution of damage. This model was implemented using finite element analysis to investigate the performance of the commercial composite pipe. Initially, the material properties were obtained from experimental data and fitting with static structural simulations. Then, FE simulations with damage were performed, considering three different boundary conditions: open, closed (pressure-vessel type) and fixed ends, the load considered was internal pressure. Results showed differences not only in the stress distribution but on the damage initiation and evolution along the geometry of the pipe. These differences in the damage initiation and propagation can be explained as the result of different axial-hoop stress ratio.



Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi




J. S.B. León et al., "Damage in Fibreglass Composite Laminates Used for Pipes", Key Engineering Materials, Vol. 774, pp. 155-160, 2018

Online since:

August 2018




* - Corresponding Author

[1] A. Sas-Jaworsky, J. G. Williams, A. Sas-Jaworsky, and J. G. Williams, Composite Spoolable Pipe Development , Advancements , and Limitations,, in Offshore Technology Conference, (2000).

DOI: https://doi.org/10.4043/12029-ms

[2] S. Gómez, B. Ramón, and R. Guzman, Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers,, Rev. UIS Ing., vol. 17, no. 1, p.43–50, (2018).

DOI: https://doi.org/10.18273/revuin.v17n1-2018004

[3] R. K. Watkins and L. R. Anderson, Structural Mechanics of Buried Pipes. Boca Ratón, Florida: CRC Press, (1999).

[4] M. Xia, H. Takayanagi, and K. Kemmochi, Analysis of multi-layered filament-wound composite pipes under internal pressure,, Compos. Struct., vol. 53, no. 4, p.483–491, (2001).

DOI: https://doi.org/10.1016/s0263-8223(01)00061-7

[5] X. S. Sun, V. B. C. Tan, Y. Chen, L. B. Tan, R. K. Jaiman, and T. E. Tay, Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method,, Acta Mech., vol. 225, no. 6, p.1649–1672, (2014).

DOI: https://doi.org/10.1007/s00707-013-1017-9

[6] H. G. Kunert, J. L. Otegui, and A. Marquez, Nonlinear FEM strategies for modeling pipe-soil interaction,, Eng. Fail. Anal., vol. 24, p.46–56, (2012).

DOI: https://doi.org/10.1016/j.engfailanal.2012.03.008

[7] X. Anping, S. Peng, Z. Jingjing, and Q. Yunxia, FEA-based Comparison of Two Kinds of Steel Wire Reinforced Composite Pipes,, 4th Int. Conf. Intell. Networks Intell. Syst., p.184–187, (2011).

DOI: https://doi.org/10.1109/icinis.2011.21

[8] L. Ferry, D. Perreux, J. Rousseau, and F. Richard, Interaction between plasticity and damage in the behaviour of [+φ, −φ]n fibre reinforced composite pipes in biaxial loading (internal pressure and tension),, Compos. Part B Eng., vol. 29, p.715–723, (1998).

DOI: https://doi.org/10.1016/s1359-8368(98)00030-4

[9] P. F. Liu, L. J. Xing, and J. Y. Zheng, Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method,, Compos. Part B Eng., vol. 56, p.54–61, (2014).

DOI: https://doi.org/10.1016/j.compositesb.2013.08.017

[10] J. H. S. Almeida, M. L. Ribeiro, V. Tita, and S. C. Amico, Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches,, Mater. Des., vol. 96, p.431–438, (2016).

DOI: https://doi.org/10.1016/j.matdes.2016.02.054

[11] Z. Hashin, Failure Criteria for Unidirectional Fiber Composites,, J. Appl. Mech., vol. 47, no. 2, p.329, (1980).

DOI: https://doi.org/10.1115/1.3153664

[12] E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, Second. Boca Raton, U.S.A.: CRC Press, (2013).

[13] A. Matzenmiller, J. Lubliner, and R. L. Taylor, A constitutive model for anisotropic damage in fiber-composites,, Mech. Mater., vol. 20, no. 2, p.125–152, (1995).

DOI: https://doi.org/10.1016/0167-6636(94)00053-0

[14] O. A. González-Estrada, J. Leal-Enciso, J. D. Reyes-Herrera, J. Leal Enciso, and J. D. Reyes Herrera, Análisis de integridad estructural de tuberías de material compuesto para el transporte de hidrocarburos por elementos finitos,, Rev. UIS Ing., vol. 15, no. 2, p.105–116, Jan. (2016).

DOI: https://doi.org/10.18273/revuin.v15n2-2016009

[15] E. Baranger, O. Allix, and L. Blanchard, A computational strategy for the analysis of damage in composite pipes,, Compos. Sci. Technol., vol. 69, no. 1, p.88–92, (2009).

DOI: https://doi.org/10.1016/j.compscitech.2007.10.050