Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts


Article Preview

Three-dimensional (3D) printing technology has been traditionally used for the production of prototypes. Recently, developments in 3D printing using Fused Deposition Modelling (FDM) and reinforcement with continuous fibres (fiberglass and carbon fibre), have allowed the manufacture of functional prototypes, considerably improving the mechanical performance of the composite parts. In this work, we characterise the elastic tensile properties of fibre reinforced specimens, considering the variation of several parameters available during the printing process: fibre orientation, volume fraction, fill pattern, reinforcement distribution. Tensile tests were performed according to ASTM D638 to obtain Young’s modulus and ultimate strength for different material configurations available during the printing process. We also perform a fractographic analysis using Scanning Electron Microscopy (SEM) to give an insight of the failure mechanisms present in the specimens.



Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi




O. A. González-Estrada et al., "Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts", Key Engineering Materials, Vol. 774, pp. 161-166, 2018

Online since:

August 2018




* - Corresponding Author

[1] R. Bogue, 3D printing: the dawn of a new era in manufacturing?,, Assem. Autom., vol. 33, no. 4, p.307–311, (2013).

[2] N. A. Waterman and P. Dickens, Rapid Product Development in the USA, Europe and Japan,, World Cl. Des. to Manuf., vol. 1, no. 3, p.27–36, (1994).

[3] B. S. Ian Gibson, David Rosen, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. New York: Springer, (2015).

DOI: https://doi.org/10.1007/978-1-4939-2113-3_16

[4] M. Dawoud, I. Taha, and S. J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques,, J. Manuf. Process., vol. 21, p.39–45, (2016).

DOI: https://doi.org/10.1016/j.jmapro.2015.11.002

[5] O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene,, Mater. Des., vol. 83, p.768–776, (2015).

[6] E. Martínez, O. A. González-Estrada, and A. Martínez, Evaluación de las propiedades tribológicas de materiales compuestos de matriz metálica ( MMCs ) procesados por técnicas de fabricación aditiva con haz láser ( SLM ),, Rev. UIS Ing., vol. 16, no. 1, p.101–114, (2017).

DOI: https://doi.org/10.18273/revuin.v16n1-2017010

[7] E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties,, Progress in Materials Science, vol. 74. p.401–477, (2015).

DOI: https://doi.org/10.1016/j.pmatsci.2015.03.002

[8] I. Durgun and R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost,, Rapid Prototyp. J., vol. 20, no. 3, p.228–235, (2014).

DOI: https://doi.org/10.1108/rpj-10-2012-0091

[9] C. S. Lee, S. G. Kim, H. J. Kim, and S. H. Ahn, Measurement of anisotropic compressive strength of rapid prototyping parts,, J. Mater. Process. Technol., vol. 187–188, p.627–630, (2007).

DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.095

[10] J. F. Rodríguez, J. P. Thomas, and J. E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling,, Rapid Prototyp. J., vol. 9, no. 4, p.219–230, (2003).

DOI: https://doi.org/10.1108/13552540310489604

[11] M. Domingo-Espin, J. M. Puigoriol-Forcada, A. A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts,, Mater. Des., vol. 83, p.670–677, (2015).

DOI: https://doi.org/10.1016/j.matdes.2015.06.074

[12] D. A. Roberson, D. Espalin, and R. B. Wicker, 3D printer selection: A decision-making evaluation and ranking model,, Virtual Phys. Prototyp., vol. 8, no. 3, p.201–212, (2013).

DOI: https://doi.org/10.1080/17452759.2013.830939

[13] N. Sa'ude, M. Ibrahim, and M. H. I. Ibrahim, Melt Flow Behavior of Metal Filled in Polymer Matrix for Fused Deposition Modeling (FDM) Filament,, Appl. Mech. Mater., vol. 660, p.84–88, (2014).

DOI: https://doi.org/10.4028/www.scientific.net/amm.660.84

[14] J. M. Gardner et al., Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments,, Nasa, p.8, (2016).

[15] P. Dudek, FDM 3D printing technology in manufacturing composite elements,, Arch. Metall. Mater., vol. 58, no. 4, p.1415–1418, (2013).

DOI: https://doi.org/10.2478/amm-2013-0186

[16] S. Gómez, B. B. Ramón, and R. Guzman, Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers,, Rev. UIS Ing., vol. 17, no. 1, p.43–50, (2018).

DOI: https://doi.org/10.18273/revuin.v17n1-2018004

[17] N. Cardona Uribe, C. Arenas Echeverry, M. Betancur Velez, L. Jaramillo, and J. Martinez, Possibilities of rice husk ash to be used as reinforcing filler in polymer sector -a review,, Rev. UIS Ing., vol. 13, no. 1, p.127–142, Feb. (2018).

DOI: https://doi.org/10.18273/revuin.v17n1-2018012

[18] Markforged Inc., Mechanical Properties,, 2016..

[19] K. Mori, T. Maeno, and Y. Nakagawa, Dieless forming of carbon fibre reinforced plastic parts using 3D printer,, Procedia Eng., vol. 81, no. October, p.1595–1600, (2014).

DOI: https://doi.org/10.1016/j.proeng.2014.10.196

[20] G. W. Melenka, B. K. O. Cheung, J. S. Schofield, M. R. Dawson, and J. P. Carey, Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures,, Compos. Struct., vol. 153, p.866–875, (2016).

DOI: https://doi.org/10.1016/j.compstruct.2016.07.018

[21] Mark Two – Markforged,, 2017. [Online]. Available: https://markforged.com/mark-two/. [Accessed: 06-Mar-2018].

[22] Standard test method for tensile properties of plastics,, ASTM D638. p.1–17, (2014).

[23] G. W. Melenka, J. S. Schofield, M. R. Dawson, and J. P. Carey, Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer,, Rapid Prototyp. J., vol. 21, no. 5, p.618–627, (2015).

DOI: https://doi.org/10.1108/rpj-09-2013-0093