Modeling, Simulation, and Experimentation of Fatigue Behavior in Amorphous Solids

Abstract:

Article Preview

Amorphous solids, such as certain polymers, alloys, and polymer-based composites,are increasingly used materials in engineering components and thus, their fatigue behavioris of utmost importance. The article presents a unified approach suitable for modeling bothisothermal high cycle and low cycle fatigue behavior. The emphasis is placed on the ductilefatigue in which fatigue damage represents the material degeneration during the creation ofmicro-cracks governing majority of the total fatigue life (up to 95%). The model’s capability fortechnologically important polycarbonate (PC) polymer is addressed. The results, in accordancewith experimental observations, favor ductile fatigue behavior, i.e. damage fields remain smallfor most of the fatigue life and do not cause the macroscopic stress reduction. Due to thisproperty, fatigue life of an entire structural element can be evaluated by exploiting singlelocations at which the fatigue damage decisively emerges.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

210-216

Citation:

T. Barriere et al., "Modeling, Simulation, and Experimentation of Fatigue Behavior in Amorphous Solids", Key Engineering Materials, Vol. 774, pp. 210-216, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] R. Beesley, H. Chen, and M. Hughes. A novel simulation for the design of a low cycle fatigue experimental testing programme. Comp. Struct., 178:105-118, (2017).

DOI: https://doi.org/10.1016/j.compstruc.2016.09.004

[2] M. J. W. Kanters, T. Kurokawa, and L. E. Govaert. Competition between plasticity-controlled and crack-growth controlled failure in static and cyclic fatigue of thermoplastic polymer systems. Polymer Testing, 50:101-110, (2016).

DOI: https://doi.org/10.1016/j.polymertesting.2016.01.008

[3] J. M. Hughes, M. Lugo, J. L. Bouvard, T. McIntyre, and M. F. Horstemeyer. Cyclic behavior and modeling of small fatigue cracks of a polycarbonate polymer. Int. J. Fatigue, 99:78-86, (2017).

DOI: https://doi.org/10.1016/j.ijfatigue.2016.12.012

[4] X. D. Wang, R. T. Qu, S. J. Wua, Z.nQ. Liua, and Z. F. Zhang. Fatigue damage and fracture behavior of metallic glass under cyclic compression. Materials Science and Engineering: A, 717: 41-47, (2018).

[5] R. P. M. Janssen, D. K. Kanter, L. E. Govaert, and H. E. H. Meijer. Fatigue life predictions for glassy polymers: A constitutive approach. Macromolecules, 41:2520-30, (2008).

DOI: https://doi.org/10.1021/ma071273i

[6] S. Holopainen, T. Barriere, G. Cheng, and R. Kouhia. Continuum approach for modeling fatigue in amorphous glassy polymers. applications to the investigation of damage-ratcheting interaction in polycarbonate. Int. J. Plasticity, 91:109-133, (2017).

DOI: https://doi.org/10.1016/j.ijplas.2016.12.001

[7] S. Murakami. Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Springer Science and Business Media, (2012).

[8] A. Fatemi and L. Yang. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int. J. Fatigue, 20:9-34, (1998).

DOI: https://doi.org/10.1016/s0142-1123(97)00081-9

[9] N.S. Ottosen, R. Stenstr¨om, and M. Ristinmaa. Continuum approach to high-cycle fatigue modeling. Int. J. Fatigue, 30(6):996-1006, (2008).

DOI: https://doi.org/10.1016/j.ijfatigue.2007.08.009

[10] L. Anand and M. E. Gurtin. A theory of amorphous solids undergoing large deformations with application to polymer glasses. Int. J. Solids Structures, 40:1465-1487, (2003).

DOI: https://doi.org/10.1016/s0020-7683(02)00651-0

[11] S. Holopainen and T. Barriere. Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers. Computers and Structures, 199:57-73, (2018).

DOI: https://doi.org/10.1016/j.compstruc.2018.01.010

[12] J. S. Bergstr¨om and M. C. Boyce. Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids, 46:931-954, (1998).

[13] S. Holopainen. Modeling of the mechanical behavior of amorphous glassy polymers under variable loadings and comparison with state-of-the-art model predictions. Mechanics of Materials, 66:35- 58, (2013).

DOI: https://doi.org/10.1016/j.mechmat.2013.06.009

[14] S. Holopainen. Influence of damage on inhomogeneous deformation behavior of amorphous glassy polymers. Modeling and algorithmic implementation in a finite element setting. Engng. Fract. Mech., 117:28-50, (2014).

DOI: https://doi.org/10.1016/j.engfracmech.2014.01.002

[15] M. C. Boyce, D. M. Parks, and A. S. Argon. Large inelastic deformation of glassy polymers, Part I: Rate-dependent constitutive model. Mechanics of Materials, 7:15-33, (1988).

DOI: https://doi.org/10.1016/0167-6636(88)90003-8