Optimization of Design Parameters of Fracture Resistant Piezoelectric Vibration Energy Harvester

Abstract:

Article Preview

This paper is focused on an analysis of a multilayer ceramic-based piezoelectric vibration energy harvester, which could be excited by ambient vibrations or external forces and thus provide a useful source of electricity for modern electronics. The proposed multilayer concept of the energy harvester enables introduction of tensile / compressive residual stresses inside particular layers. These stresses are intended to be used for enhancement of the harvester ́s fracture resistance and simultaneously for the improvement of the energy gain upon its operation. A crack arrest, by means of compressive residual stresses (in the outer “non-piezo” layer), will be utilized to this end. Primarily, the extended classical laminate theory (taking into account the piezoelectric characteristics of selected layers) will be used to define various designs of particular layers with various levels of residual stresses inside them. The weight function method is subsequently employed to select a design, which is most resistant to propagation of preexisting cracks. Selected laminate configurations are verified by means of FE simulations. Such analysis is essential for development of new energy harvesting systems formed of new smart materials and structures, which could be integrated in future development processes.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

416-422

Citation:

Z. Majer et al., "Optimization of Design Parameters of Fracture Resistant Piezoelectric Vibration Energy Harvester", Key Engineering Materials, Vol. 774, pp. 416-422, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] Y. Bang, P. Tofel, Z. Hadas, J. Smilek, P. Losak, P. Skarvada, R. Macku: Mech. Sys. and Signal Proc., Vol. 106 (2018), p.303.

[2] C. Jean-Mistral, L. Carlioz, M. Defosseux, M. Marzencki, O. Cugat, J. Delamare, S. Basrour: Mat. Res. Soc. Symp. Proceedings, Vol. 1218 (2010), p.20.

DOI: https://doi.org/10.1557/proc-1218-z04-03

[3] K. Umesh, R. Ganguli: Smart Mat. and Structure, Vol. 18 (2009), Article number 025002.

[4] O. Sevecek, M. Kotoul, D. Leguillon, E. Martin, R. Bermejo: Eng. Frac. Mech., Vol. 167 (2016), p.45.

[5] D.J. Green, P.Z. Cai, G.L. Messing: Jour. of the Eur. Cer. Soc., Vol. 19 (1999), p.2511.

[6] T.Chartier, D. Merle, J.L. Besson: Jour. of the Eur. Cer. Soc., Vol. 15 (1995), p.101.

[7] V.M. Sglavo, M. Bertoldi: Acta Materialia, Vol. 54 (2006), p.4929.

[8] L. Sestakova, R. Bermejo, Z. Chlup, R. Danzer: Int. J. of Mat. Res., Vol. 102 (2011), p.613.

[9] S. Rattanachan, Y. Miyashita, Y. Mutoh: Jour. of the Eur. Cer. Soc., Vol. 23 (2003), p.1269.

[10] V.M.K. Akula, M.R. Garnich: Comp. part B: Engineering, Vol. 43 (2012), p.2143.

[11] T. Fett, D. Munz: Stress Intensity Factor and Weight Functions, Computational Mechanics Publication, (1997).

[12] H.F. Bueckner: Z. Angew. Math. Mech., Vol. 50 (1970), p.529.

[13] M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, M. Lewis: Acta Materialia, Vol. 53 (2005), p.289.

DOI: https://doi.org/10.1016/j.actamat.2004.09.022

[14] T. Fett, D. Munz, Y.Y. Yang: Eng. Fract. Mech., Vol. 65 (2000), p.393.

[15] T. Fett, D. Munz: J. Am. Ceram. Soc., Vol. 75 (1992), p.3133.

Fetching data from Crossref.
This may take some time to load.