How Material Properties Affect the Thermal Distortion of a Mold for Continuous Casting of Steel

Abstract:

Article Preview

Copper molds are adopted in continuous casting to provide an initial solidification of steel. The presence of molten steel induces relevant temperature gradients across mold walls. This, in turn, generates high stress levels, exceeding the yielding limit of the material. Recent works confirm that thermal distortion occurs due to both creep and cyclic plasticity. In this work a numerical investigation is developed, simulating the mold behavior under repeated heating and cooling sequences. The aim of this work is to compare the performances in terms of permanent distortion of different copper alloys usually adopted for such application. It can be observed that both material properties and operating temperature have a significant influence in the permanent distortion evolution.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

429-434

Citation:

L. Moro et al., "How Material Properties Affect the Thermal Distortion of a Mold for Continuous Casting of Steel", Key Engineering Materials, Vol. 774, pp. 429-434, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] J. Srnec Novak, D. Benasciutti, F. De Bona, A. Stanojević and P. Huter: Procedia Engineering Vol. 133 (2015), pp.688-697.

DOI: https://doi.org/10.1016/j.proeng.2015.12.651

[2] J. Heilemann, M. Jünemann and K. Schwerdtfeger: Ironmaking and Steelmaking Vol. 43 (2016), pp.659-662.

DOI: https://doi.org/10.1080/03019233.2015.1132118

[3] L. Moro, J. Srnec Novak, D. Benasciutti, F. De Bona: Ironmaking and Steelmaking (2017), published on line.

DOI: https://doi.org/10.1080/03019233.2017.1371425

[4] L. Moro, J. Srnec Novak, D. Benasciutti, F. De Bona, Key Engineering Materials, Vol. 754 (2017), pp.287-290.

DOI: https://doi.org/10.4028/www.scientific.net/kem.754.287

[5] D. Benasciutti, J. Srnec Novak, L. Moro, F. De Bona, A Stanojević, Fatigue and Fracture of Engineering Materials and Structures, (2018), published on line https://doi.org/10.1111/ffe.12783.

[6] J. Srnec Novak et al., IOP Conference Series: Materials Science and Engineering, Vol 19 (2016).

[7] G. Li, B.G. Thomas and J.F. Stubbins: Metall. Mater. Trans. Vol. 31A (2000), pp.2491-2502.

[8] J.-H. You, M. Miskiewicz, Journal of Nuclear Materials 373 (2008), pp.269-274.

[9] J. Lemaitre, J.L. Chaboche. Mechanics of solid materials, Cambridge University Press, Cambridge (1990).

[10] L. Moro, D. Benasciutti, F. De Bona, Ironmaking and Steelmaking (2017), published on line.