Stress Sensitivity of the T(0,1) Mode Velocity for Cylindrical Waveguides

Abstract:

Article Preview

In this paper, the stress influence in the guided wave velocity of the fundamentaltorsional mode is presented. Two analytical models, based on the Acoustoelasticity effect, tocompute the fundamental torsional mode velocity propagating in a specimen subject to anaxial stress are studied. These models are obtained due to the relation between the T(0, 1)guided wave velocity and the bulk shear velocity. The analytical models to calculate the guidedwave velocity are functions of the stress, second and third order elastic constants. A series ofaxial stress levels applied to a cylindrical waveguide is investigated with numerical simulations(Finite Elements) to estimate variations of the T(0, 1) guided wave velocity. This analysisprovides a criterion to evaluate the practical implementation of a stress monitoring schemebased on velocity variations of the fundamental torsional mode.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

453-460

Citation:

J. E. Quiroga Mendez et al., "Stress Sensitivity of the T(0,1) Mode Velocity for Cylindrical Waveguides", Key Engineering Materials, Vol. 774, pp. 453-460, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Fan Shi, Jennifer E. Michaels, and Sang Jun Lee. In situ estimation of applied biaxial loads with Lamb waves. Journal of the Acoustical Society of America, 133(2):677-687, (2013).

DOI: https://doi.org/10.1121/1.4773867

[2] Salim Chaki, Gilles Corneloup, Ivan Lillamand, and Henri Walaszek. Combination of Longitudinal and Transverse Ultrasonic Waves for In Situ Control of the Tightening of Bolts. Journal of Pressure Vessel Technology, 129(3):383, (2007).

DOI: https://doi.org/10.1115/1.2748821

[3] I. Bartoli, R. R. Phillips, S. Coccia, A. Srivastava, F. Lanza di Scalea, M. Fateh, and G. Carr. Stress dependence of ultrasonic guided waves in rails. Journal of the Transportation Research Board, 2159(2159):91-97, (2010).

DOI: https://doi.org/10.3141/2159-12

[4] Feng Chen and Paul D. Wilcox. The effect of load on guided wave propagation. Ultrasonics, 47(1-4):111-122, (2007).

DOI: https://doi.org/10.1016/j.ultras.2007.08.003

[5] P. W. Loveday, C. S. Long, and P. D. Wilcox. Semi-Analytical Finite Element Analysis of the Influence of Axial Loads on Elastic Waveguides. In D Moratal, editor, Finite Element Analysis From Biomedical Applications to Industrial Developments, chapter 18, pages 439- 454. InTech, (2012).

DOI: https://doi.org/10.5772/38609

[6] S. Chaki and G. Bourse. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands. Ultrasonics, 49(2):162-171, (2009).

DOI: https://doi.org/10.1016/j.ultras.2008.07.009

[7] S. Chaki and G. Bourse. Stress level measurement in prestressed steel strands using acoustoelastic effect. Experimental Mechanics, 49(5):673-681, (2009).

DOI: https://doi.org/10.1007/s11340-008-9174-9

[8] C. Nucera and F. L. d. Scalea. Monitoring load levels in multi-wire strands by nonlinear ultrasonic waves. Structural Health Monitoring, 10(6):617-629, (2011).

DOI: https://doi.org/10.1177/1475921710395812

[9] M. D. Beard, M. J. S. Lowe, and P. Cawley. Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts. Journal of Materials in Civil Engineering, 15(June):212-218, (2003).

DOI: https://doi.org/10.1061/(asce)0899-1561(2003)15:3(212)

[10] Jabid E Quiroga, John Quiroga, Rodolfo Villamizar, Luis E Mujica, and Magda Ruiz. Guided Ultrasonic Wave for Monitoring Stress Levels in Pipelines. In 7th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2015), pages 1-14, (2015).

DOI: https://doi.org/10.4028/www.scientific.net/kem.713.288

[11] J. L. Rose. Ultrasonic Waves in Solid Media. Cambridge University Press, (2014).

[12] Erasmo Viola and Alessandro Marzani. Exact Analysis of Wave Motions in Rods and Hollow Cylinders.

DOI: https://doi.org/10.1007/978-3-211-70963-4_5

[13] B.A Auld. Acoustic Fields and Waves in Solids. Vol. II. Wiley-Interscience, Stanford, California, 1 edition, (1973).

[14] K. Graff. Wave Motion in Elastic Solids, (1975).

[15] A Armenakas, Denos Gazis, and G Herrmann. Free Vibrations of Circular Cylindrical Shells. Pergamon Press, london, 1 edition, (1969).

DOI: https://doi.org/10.1016/b978-0-08-011732-4.50012-x

[16] Marc Duquennoy, Mohammadi Ouaftouh, Dany Devos, Frederic Jenot, and Mohamed Ourak. Effective elastic constants in acoustoelasticity. Applied Physics Letters, 92(24):1-3, (2008).

DOI: https://doi.org/10.1063/1.2945882

[17] D.M Egle and D.E Bray. Measurement of Acoustoelatic and Third-Order Elastic Constants for Rail Steel. Journal of the Acoustical Society of America, 60(3):27-30, (1976).

[18] SeJin Han. Finite Element Analysis of Lamb Waves. PhD thesis, Department of Aeronautical and Astronautical Engineering, (2007).

[19] Premesh Shehan Lowe, Ruth M. Sanderson, Nikolaos V. Boulgouris, Alex G. Haig, and Wamadeva Balachandran. Inspection of Cylindrical Structures Using the First Longitudinal GuidedWave Mode in Isolation for Higher Flaw Sensitivity. IEEE Sensors Journal, 16(3):706- 714, (2016).

DOI: https://doi.org/10.1109/jsen.2015.2487602

[20] Mickael Brice Drozdz. Efficient Finite Element Modelling of Ultrasound Waves in Elastic Media. PhD thesis, University of London, (2008).