Shortening the Long Creep Strength Evaluation Period with the Assistant of Stress Relaxation Behavior

Abstract:

Article Preview

P92 heat-resistant steel was used to demonstrate that creep rupture life evaluation period could be shorted by the assistant of the creep data from short-period stress relaxation test without reducing the prediction precision. Research showed that the minimum creep rate and the relaxation creep rate were exchangeable, and the stress exponent and the apparent activation energy analysis of the constant strain creep and the constant stress creep showed a similar deformation mechanism at the condition of T and . The creep rupture life predicted through the combination of these two kinds of creep data was closer to the real creep data than that evaluated by the traditional method based on the time to rupture only, and the precision of the evaluated creep strength increased at last 14.5 %.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

553-558

Citation:

T. S. Cao et al., "Shortening the Long Creep Strength Evaluation Period with the Assistant of Stress Relaxation Behavior", Key Engineering Materials, Vol. 774, pp. 553-558, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] D.R. Hayhurst: J Mech Phys Solids Vol. 20(1972), p.381.

[2] F.A. Leckie, D.R. Hayhurst: Acta Metall Vol. 25(1977), p.1059.

[3] C. Pandey, M.M. Mahapatra, P. Kumara, et al.: Mat Sci Eng A-Struct Vol. 695(2017), p.291.

[4] K. Nornura, K. Kubushiro, H. Nakagawa, et al.: Mater Trans Vol. 57(2016), p. (2097).

[5] T. Shrestha, M. Basirat, S. Alsagabi, et al.: Mat Sci Eng A-Struct Vol. 669(2016), p.75.

[6] R.V. Hart: Metals Technol Vol. 3(1976), p.1.

[7] D.A. Woodford: JSME Int. J. A-Solid M Vol. 45(2002), p.98.

[8] J. Tanks, K. Rader, S. Sharp, et al.: Compos Struct Vol. 159 (2017), p.455.

[9] D. Seruga, M. Nagode: Mat Sci Eng A-Struct Vol. 528(2011), p.2804.

[10] A. Loghman, M. Moradi: Int J Pres Ves Pip Vol. 151(2017), p.11.

[11] R.W. Evans: P Roy Soc A Vol. 456(2000), p.835.

[12] Y.Y. Zheng, S.S. Yang, X. Ling: Eng Fail Anal Vol. 72(2017), p.58.

[13] F. POVOLO: J Mater Sci Vol. 20(1985), p. (2005).

[14] M. PRAGER: J Press Vess-T ASME Vol. 117(1995), p.95.

[15] J.S. Zhang, High Temperature Deformation and Fracture of Materials, first ed., Science Press, Beijing(2007).

[16] NIMS Creep Data Sheet No.48A, National Institute for Materials Science, Tsukuba(2012).

[17] T.S. Cao, Dalian: Dalian University of Technology (2016).