A Thermodynamically Consistent CZM for Low-Cycle Fatigue Analysis


Article Preview

A cohesive zone model for low-cycle fatigue analysis is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variable. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the damage activation condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behavior without any fatigue degradation for low levels loading conditions.



Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi




F. Parrinello et al., "A Thermodynamically Consistent CZM for Low-Cycle Fatigue Analysis", Key Engineering Materials, Vol. 774, pp. 576-582, 2018

Online since:

August 2018




* - Corresponding Author

[1] D. Dugdale, Yielding of Steel Sheets Containing Slits,, J. Mech. Phys. Solids., vol. 8, pp.100-104, (1960).

[2] G. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture,, Advances in Applied Mechanics, vol. 7, pp.55-129, (1962).

DOI: https://doi.org/10.1016/s0065-2156(08)70121-2

[3] A. Hillerborg, et al, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,, Cement and Concrete Research, vol. 6, no. 6, pp.773-781, (1976).

DOI: https://doi.org/10.1016/0008-8846(76)90007-7

[4] V. Gulizzi and I. Benedetti, Micro-cracking of brittle polycrystalline materials with initial damage,, European Journal of Computational Mechanics, vol. 25, no. 1-2, pp.38-53, (2016).

DOI: https://doi.org/10.1080/17797179.2016.1181032

[5] J. Lemaitre, J. Sermage and R. Desmorat, A two scale damage concept applied to fatigue,, International Journal of Fracture, vol. 97, pp.67-81, (1999).

[6] P. Paris and F. and Erdogan, A Critical Analysis of Crack Propagation Laws,, ASME J. Basic Eng., vol. 85, no. 4, p.528–533, (1963).

DOI: https://doi.org/10.1115/1.3656902

[7] R. H. J. Peerlings, W. A. M. Brekelmans, R. de Borst and M. G. D. Geers, Gradient-Enhanced Damage Modelling of High-Cycle Fatigue,, Int. J. Numer. Methods Eng., vol. 49, no. 12, p.1547–1569, (2000).

DOI: https://doi.org/10.1002/1097-0207(20001230)49:12<1547::aid-nme16>3.3.co;2-4

[8] O. Nguyen, E. Repetto, M. Ortiz and R. Radovitzky, A cohesive model of fatigue crack growth,, International Journal of Fracture, vol. 110, p.351–369,, (2001).

[9] Q. Yang, D. Shim and S. Spearing, A cohesive zone model for low cycle fatigue life prediction of solder joints,, Microelectronic Engineering, vol. 75, pp.85-95, (2004).

DOI: https://doi.org/10.1016/j.mee.2003.11.009

[10] K. Roe and T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation,, Engineering Fracture Mechanics, vol. 70, pp.209-232, (2003).

DOI: https://doi.org/10.1016/s0013-7944(02)00034-6

[11] A. Needleman, An analysis of decohesion along an imperfect interface,, Int J of Frac, vol. 42, p.21–40, (1990).

[12] S. Oller, O. Salomon and E. Onate, A continuum mechanics model for mechanical fatigue analysis,, Computational Materials Science, vol. 32, pp.175-195, (2005).

DOI: https://doi.org/10.1016/j.commatsci.2004.08.001

[13] F. Parrinello, B. Failla and G. Borino, Cohesive-frictional interface constitutive model,, Int. J. Solids Structures, vol. 46, no. 13, pp.2680-2692, (2009).

DOI: https://doi.org/10.1016/j.ijsolstr.2009.02.016

[14] F. Parrinello, G. Marannano and G. Borino, A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination,, Engineering Fracture Mechanics, vol. 153, pp.61-79, (2016).

DOI: https://doi.org/10.1016/j.engfracmech.2015.12.001

[15] F. Parrinello and G. Borino, Integration of finite displacement interface element in reference and current configurations,, Meccanica, vol. 53, pp.1455-1468, (2018).

DOI: https://doi.org/10.1007/s11012-017-0804-0

[16] F. Parrinello, G. Marannano and G. P. ,. A. Borino, Frictional effect in mode II delamination: Experimental test and numerical simulation,, Engineering Fracture Mechanics, vol. 110, pp.258-269, (2013).

DOI: https://doi.org/10.1016/j.engfracmech.2013.08.005

[17] F. Parrinello, Analytical Solution of the 4ENF Test with Interlaminar Frictional Effects and Evaluation of Mode II Delamination Toughness,, J. Eng. Mech, vol. 144, no. 4, (2018).

DOI: https://doi.org/10.1061/(asce)em.1943-7889.0001433

[18] R. Serpieri and G. Alfano, Bond-slip analysis via a thermodynamically consistent interface model combining interlocking, damage and friction,, In. Jou. Num. Meth. Engng., vol. 85, no. 2, pp.164-186, (2011).

DOI: https://doi.org/10.1002/nme.2961

[19] I. Guiamatsia and N. G., A thermodynamics-based cohesive model for interface debonding and friction,, Int. J. Solids Structures, vol. 51, no. 3-4, pp.647-659, (2014).

DOI: https://doi.org/10.1016/j.ijsolstr.2013.10.032

[20] A. Corigliano, Formulation, identification and use of interface models in the numerical analysis of composite delamination,, Int. J. Solids Structures, vol. 30, no. 20, pp.2779-2811, (1993).

DOI: https://doi.org/10.1016/0020-7683(93)90154-y

[21] L. Daudeville, O. Allix and P. Ladevéze, Delamination analysis by damage mechanics: Some applications,, Comp. Engng., vol. 5, no. 1, pp.17-24, (1995).

DOI: https://doi.org/10.1016/0961-9526(95)93976-3

[22] O. Allix, P. Ladeveze and A. Corigliano, Damage analysis of interlaminar,, Comp. Struct., vol. 31, no. 1, pp.61-74, (1995).

DOI: https://doi.org/10.1016/0263-8223(95)00002-x

[23] J. Mosler and I. Scheider, A thermodynamically and variationally consistent class of damage-type cohesive models,, J. Mech. Physics Solids, vol. 59, no. 8, pp.1647-1668, (2011).

DOI: https://doi.org/10.1016/j.jmps.2011.04.012

[24] G. Borino, L. Fratini and F. Parrinello, Mode I failure modeling of friction stir welding joints,, Int J Adv Manuf Technol, vol. 41, p.498–503, (2009).

DOI: https://doi.org/10.1007/s00170-008-1498-1

[25] V. Gulizzi, A. Milazzo and I. Benedetti, An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials,, Computational Mechanics, vol. 56, no. 4, pp.631-651, (2015).

DOI: https://doi.org/10.1007/s00466-015-1192-8

[26] V. Gulizzi, C. H. Rycroft and I. Benedetti, Modelling intergranular and transgranular micro-cracking in polycrystalline materials,, Comp. Methods in Applied Mechanics and Engineering, vol. 329, pp.168-194, (2018).

DOI: https://doi.org/10.1016/j.cma.2017.10.005