Statistical Inference of the Equivalent Initial Flaw Size Distribution Using the Boundary Element Method under Multiple Sources of Uncertainty

Abstract:

Article Preview

In this work, a method for determining the Equivalent Initial Flaw Size (EIFS) distribution using the Boundary Element Method (BEM) is proposed. Maximum Likelihood Estimation (MLE) is used to infer the EIFS distribution of a cracked stiffened panel under multiple sources of uncertainty, including uncertainty in the loading conditions, fatigue crack growth model parameters, and in the measurement of crack size found from routine inspections. Results suggest that MLE is an effective tool for estimating the parameters of an EIFS distribution when no prior knowledge is available regarding the EIFS distribution or its parameters.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

613-618

Citation:

L. Morse et al., "Statistical Inference of the Equivalent Initial Flaw Size Distribution Using the Boundary Element Method under Multiple Sources of Uncertainty", Key Engineering Materials, Vol. 774, pp. 613-618, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] Findlay SJ, Harrison ND. Why aircraft fail. Materials Today. 2002;5(11):18-25.

DOI: https://doi.org/10.1016/s1369-7021(02)01138-0

[2] J.P. G, Giessler FJ, Berens AP, Engle RM. USAF damage tolerant design handbook - Guidelines for the Analysis and Design of Damage Tolerant Aicraft Structures. Wright-Patterson Air Force Base: USAF; (1984).

[3] Forth SC, Everett RA, Newman JA, editors. A Novel Approach to Rotorcraft Damage Tolerance. 6th Joint FAA/DoD/NASA Aging Aircraft Conference; (2002).

[4] Merati A, Eastaugh G. Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys. Engineering Failure Analysis. 2007;14(4):673-85.

DOI: https://doi.org/10.1016/j.engfailanal.2006.02.016

[5] Fawaz SA. Equivalent initial flaw size testing and analysis. Air force research laboratory, Wright-Patterson AFB; 2000. Contract No.: AFRLVA-WP-TR-2000–3024.

DOI: https://doi.org/10.21236/ada387280

[6] Fawaz SA. Equivalent inital flaw size testing and analysis of transport aircraft skin splices. Fatigue & Fracture of Engineering Materials & Structures. (2003).

[7] Johnson WS. The history, logic and uses of the Equivalent Initial Flaw Size approach to total fatigue life prediction. Procedia Engineering. 2010;2(1):47-58.

DOI: https://doi.org/10.1016/j.proeng.2010.03.005

[8] Moreira PMGP, de Matos PFP, de Castro PMST. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens. Theoretical and Applied Fracture Mechanics. 2005;43(1):89-99.

DOI: https://doi.org/10.1016/j.tafmec.2004.12.005

[9] Molent L, Sun Q, Green AJ. Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures. 2006;29(11):916-37.

DOI: https://doi.org/10.1111/j.1460-2695.2006.01050.x

[10] White P, Molent L, Barter S. Interpreting fatigue test results using a probabilistic fracture approach. International Journal of Fatigue. 2005;27(7):752-67.

DOI: https://doi.org/10.1016/j.ijfatigue.2005.01.006

[11] Barter SA, Sharp PK, Holden G, Clark G. Initiation and early growth of fatigue cracks in an aerosapce aluminium alloy. Fatigue Fract Eng Mater Struct. 2001;25(2):111-25.

DOI: https://doi.org/10.1046/j.1460-2695.2002.00482.x

[12] Liu Y, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. International Journal of Fatigue. 2009;31(3):476-87.

DOI: https://doi.org/10.1016/j.ijfatigue.2008.06.005

[13] Xiang Y, Lu Z, Liu Y. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading. International Journal of Fatigue. 2010;32(2):341-9.

DOI: https://doi.org/10.1016/j.ijfatigue.2009.07.011

[14] Lu Z, Xiang Y, Liu Y. Crack growth-based fatigue-life prediction using an equivalent initial flaw model. Part II: Multiaxial loading. International Journal of Fatigue. 2010;32(2):376-81.

DOI: https://doi.org/10.1016/j.ijfatigue.2009.07.013

[15] Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. International Journal of Fatigue. 2007;29(1):141-5.

DOI: https://doi.org/10.1016/j.ijfatigue.2006.01.018

[16] Cross R, Makeev A, Armanios E. Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters. International Journal of Fatigue. 2007;29(8):1510-5.

DOI: https://doi.org/10.1016/j.ijfatigue.2006.10.027

[17] Sankararaman S, Ling Y, Mahadevan S. Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axial variable amplitude loading. International Journal of Fatigue. 2010;32(10):1689-700.

DOI: https://doi.org/10.1016/j.ijfatigue.2010.03.012

[18] Sankararaman S, Ling Y, Shantz C, Mahadevan S. Inference of equivalent initial flaw size under multiple sources of uncertainty. International Journal of Fatigue. 2011;33(2):75-89.

DOI: https://doi.org/10.1016/j.ijfatigue.2010.06.008

[19] Aliabadi MH. The Boundary Element Method: Applications in solids and structures: John Wiley and Sons; (2002).

[20] Portela A, Aliabadi MH, Rooke DP. Dual Boundary Element Incremental Analysis of Crack Propagation. Computers and Structures. 1993;46(2):237-47.

DOI: https://doi.org/10.1016/0045-7949(93)90189-k

[21] Tanaka K. Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis. Engineering Fracture Mechanics. 1974;6(3):499-507.

DOI: https://doi.org/10.1016/0013-7944(74)90007-1

[22] Tuegel EJ, Bell RP, Berens AP, Brussat T, Cardinal JW, Gallagher JP, et al. Aircraft Structural Reliability and Risk Analysis Handbook. Air Force Research Laboratory. Wright-Patterson Air Force Base; 2013. Contract No.: AFRL-RQ-WP-TR-2013-0132.

DOI: https://doi.org/10.21236/ada587824

Fetching data from Crossref.
This may take some time to load.