Failure Analysis of the Restraining System of the Directional Rudder of an MD80 Aircraft


Article Preview

The directional rudder travel of an aircraft must be restricted as the speed in flight increases, this in order to decrease its sensitivity, thus avoiding maneuverability problems or overloads that could result in a break in the vertical stabilizer and cause an accident. aerial. The aircraft MD 80 have a system of restriction of the route of the directional rudder, whose main component, the hook, is the piece in charge of stopping the movement as it is introduced in the piston rod of the hydraulic cylinder that governs the movement of the rudder. In this work, the causes of the hook fractured that left the directional mechanism out of service is analyzed. In order to carry out the work, the manufacturing material of the piece was first characterized, doing the analysis of its microstructure and alloying elements, it was obtained that it has the typical characteristics of an AISI 4340 steel. Subsequently, the loads acting on the piece in service condition and the initiation of the crack route were determined. Then, the fatigue study was carried out through simulations using the finite element method. The results were that the piece failed due fatigue due to a superficial defect.



Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi




J. Coronado et al., "Failure Analysis of the Restraining System of the Directional Rudder of an MD80 Aircraft", Key Engineering Materials, Vol. 774, pp. 77-83, 2018

Online since:

August 2018




* - Corresponding Author

[1] Boeing Company, Manual de mantenimiento del avión MD-80. Publicaciones técnicas de Boeing, (2016).

[2] Aeropostal Alas de Venezuela, Manual de curso de mantenimiento en rampa y transito DC-9 series, (2015).

[3] J. Arteaga, Trabajo especial de grado Simulación del daño físico por fatiga de un acero ASTM A155,. Universidad Central de Venezuela, (2014).

[4] L. Ramírez, Trabajo especial de grado Fatiga de aleaciones de aluminio aeronáutico con nuevos tipos de anodizado de bajo impacto ambiental y varios espesores de recubrimiento,. Universidad da Coruña, A Coruña, España, (2010).


[5] O. Madrigal, Trabajo especial de grado "Análisis de Integridad de un Componente Estructural de uso Aeronáutico. Instituto Politécnico Nacional de México, México, (2008).

[6] H. Almonacid, Trabajo especial de grado Análisis de fatiga en la estructura del helicóptero UH-1H por medio del software AFGROW,. Universidad Austral de Chile, Santiago de Chile, (2005).


[7] A. De Santis,Análisis de fallos en sistemas aeronáuticos,. Madrid: Paraninfos, (2015).

[8] D. Skoog, Principios de Análisis Instrumental. Madrid: Mc Graw Hill, (2002).

[9] Myer Kutz Associates, Handbook of Materials Selection Edited by MYER KUTZ Myer Kutz, Inc John Wiley & Sons, Inc., (2002).


[10] ESSS, Engineering simulation and scientific software. ANSYS Mechanical Fatigue,, (2016).

[11] K. Rege and H. G. Lemu, A review of fatigue crack propagation modelling techniques using FEM and XFEM, IOP Conf. Series: Materials Science and Engineering 276 2017, 012027.


[12] R. Juvinall, K. M. Marshek, Fundamentals of Machine Component Design, John Wiley & Sons, Inc., (2016).

[13] Kuna, Meinhard, Finite Elements in Fracture Mechanics, Theory- Numeric-Applications, Springer, (2013).

Fetching data from Crossref.
This may take some time to load.