A Quasi-Static Delamination Model with Rate-Dependent Interface Damage Exposed to Cyclic Loading


Article Preview

A model for numerical analysis of interface damage which leads to interface crack initiationand propagation in multi-domain structures under cyclic loading is considered. Modelling of damagetakes into account various relations between interface stresses and displacement gaps providing theresponse of a cohesive zone model, additionally equipped by a kind of viscosity associated to theevolution of the interface damage. Together with repeating loading-unloading conditions, it makesthis damage process to have a fatigue-like character, where the crack appears for smaller magnitudeof the cyclic load than for pure uploading.



Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi




R. Vodička and K. Krajníková, "A Quasi-Static Delamination Model with Rate-Dependent Interface Damage Exposed to Cyclic Loading", Key Engineering Materials, Vol. 774, pp. 84-89, 2018

Online since:

August 2018




[1] K.L. Roe and T. Siegmund. An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Frac. Mech., 70:209-232, (2003).

DOI: https://doi.org/10.1016/s0013-7944(02)00034-6

[2] J.L. Bouvard, J.L. Chaboche, F. Feyel, and F. Gallerneau. A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys. Int. J. Fatigue, 31:868-879, (2009).

DOI: https://doi.org/10.1016/j.ijfatigue.2008.11.002

[3] S. Roth, G. Hütter, and M. Kuna. Simulation of fatigue crack growth with a cyclic cohesive zone model. Int. J. Frac., 188:23-45, (2014).

DOI: https://doi.org/10.1007/s10704-014-9942-8

[4] M. Raous, L. Cangemi, and M. Cocu. A consistent model coupling adhesion, friction and unilateral contact. Comput. Meth. Appl. Mech. Eng., 177(6):383-399, (1999).

DOI: https://doi.org/10.1016/s0045-7825(98)00389-2

[5] T. Roubíček, O. Souček, and R. Vodička. A model of rupturing lithospheric faults with reoccurring earthquakes. SIAM J. Appl. Math., 73(4):1460-1488, (2013).

DOI: https://doi.org/10.1137/120870396

[6] R. Vodička. A quasi-static interface damage model with cohesive cracks: SQP-SGBEM implementation. Eng. Anal. Bound. Elem., 62:123-140, (2016).

DOI: https://doi.org/10.1016/j.enganabound.2015.09.010

[7] R. Vodička, V. Mantič, and T. Roubíček. Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica, 49(12):2933- 296, (2014).

DOI: https://doi.org/10.1007/s11012-014-0045-4

[8] R. Vodička and V. Mantič. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete and Cont. Dynam. Syst.-S, 10(6):1539-1561, (2017).

DOI: https://doi.org/10.3934/dcdss.2017079

[9] R. Vodička, T. Roubíček, and V. Mantič. General-purpose model for various adhesive frictional contacts at small strains. Submitted to Interfaces and Free Boundaries, (2018).

[10] R. Vodička, V. Mantič, and F. París. Symmetric variational formulation of BIE for domain decomposition problems in elasticity - an SGBEM approach for nonconforming discretizations of curved interfaces. CMES - Comp. Model. Eng., 17(3):173-203, (2007).

DOI: https://doi.org/10.1134/s1547477108030199

[11] A. Sutradhar, G.H. Paulino, and L.J. Gray. The symmetric Galerkin boundary element method. Springer-Verlag, Berlin, (2008).

[12] Z. Dostál. Optimal Quadratic Programming Algorithms, volume 23 of Springer Optimization and Its Applications. Springer, Berlin, (2009).

DOI: https://doi.org/10.1007/978-0-387-84806-8_2

[13] P. París and F. Erdogan. A critical analysis of crack propagation laws. ASME J Basic Eng, 85(4):528-533, (1963).

DOI: https://doi.org/10.1115/1.3656901

Fetching data from Crossref.
This may take some time to load.