Potential of the Biosorbent from Waste for the Separation of Cu(II) from Aqueous Solutions


Article Preview

The aim of this paper was to study of biosorption by use waste material as a biosorbent. Waste material used in this work was activated industrial hemp shives (Cannabis sativa), which occurs during the processing of hemp shives grown as the waste biomass in the processing process. The sorbent was utilized to reduce the content of Cu(II) ions from aqueous solutions. Sorption experiments of the cannabis hemp shives were conducted in a batch mode by use the model solutions of Cu(II). The impact of pH, contact time and initial concentration on the pollutant removal efficiency was observed. The sorption kinetics were evaluated with pseudo-first and pseudo-second order kinetic models. Adsorption process has been modeled by the Langmuir, Freundlich, Temkin and Dubinin‑Radushkevich isotherms using linear regression. The results of this study indicated that the application of hemp shives of Cannabis sativa waste material as a biosorbent is highly effective for the removal copper ions from wastewater.



Edited by:

Marina Polyakova




L. Rozumová et al., "Potential of the Biosorbent from Waste for the Separation of Cu(II) from Aqueous Solutions", Key Engineering Materials, Vol. 779, pp. 102-109, 2018

Online since:

September 2018




* - Corresponding Author

[1] O.S. Amuda, I.A. Amoo and O.O. Ajayi. J. Hazard. Mater. B, Vol. 129 (2006), p.69.

[2] X. Tang, Q. Zhang, Z. Liu, K. Pan, Y. Dong and Y. Li. J. Mol. Liq. Vol. 191 (2014), p.73.

[3] S. Azizian and M. Bagheri. J. Mol. Liq. Vol. 196 (2014), p.198.

[4] Y. Orhan and H. Buyukgungor. Water Sci. Technol., Vol. 28 (1993), p.247.

[5] A. Saeed, A.M. Waheed and M. Iqbal. Sep. Purif. Technol., Vol. 45 (2005), p.25.

[6] P.D. Johnson, M.A. Watson, J. Brown and I.A. Jefcoat. Waste Manage., Vol. 22 (2002), p.471.

[7] . King, P. Srivinas, Y. Prasanna Kumar and V.S.R.K. Prasad. J. Hazard. Mater. B, Vol. 136 (2006), p.560.

[8] M.A.K. Hanafiah, W.S.W. Ngah, H. Zakaria and S.C. Ibrahim. J. Biol. Sci., Vol. 7 (2007), p.222.

[9] D. Karunasagar, M.V. Balarama Krishna, S.V. Rao and J. Arunachalam. J. Hazard. Mater., Vol. B118 (2005), p.133.

[10] I. Villaescusa, N. Fiol, M. Martinéz, N. Miralles, J. Pocj and J. Serarols. Water Res., Vol. 38 (2004), p.992.

[11] G. Cimino, A. Passerini and G. Toscano. Water Res., Vol. 34 (2000), p.2955.

[12] L. Rozumová, O. Životský, J. Seidlerová, O. Motyka, I. Šafařík and M. Šafaříková. J. Env. Chem. Eng. Vol. 4 (2016), p.549.

[13] G.H. Oh and C.R. Park. Fuel Vol. 81 (2002), p.327.

[14] L. Chunlan, X. Shaoping, G. Yixiong, L. Shuqin and L. Changhou. Carbon Vol. 43 (2005), p.2295.

[15] D. Lozana-Castelló, J.M. Calo, D. Cazorla-Amoros and A. Linares-Solano. Carbon Vol. 45 (2007), p.2529.

[16] B.D. Oomah, M. Busson, D.V. Godfrey and J.C. Drover. Food Chem. Vol. 76 (2002), p.33.

[17] I. Bócsa and M. Karus. Hemptech, Sebastopol. (1998).

[18] J. Ji. China fiber inspection Vol. 6 (2009), p.46.

[19] V. Dang and K.L. Nguyen. Bioresour. Technol. Vol. 97 (2006), p.1353.

[20] J. Ajaelu Chijioke, L. Oluwafunke, V. Adedeji and O. Olafisoye. Am.-Eurasian J. Sci. Res. Vol. 6 (2011), p.123.

[21] W. Plazinski, W. Rudzinski and A. Plazinska. Adv. Colloid Interface Sci. Vol. 152 (2009), p.2.

[22] C.L. Mack, B. Wilhelmi, J.R. Duncan and J.E. Burgess. Miner. Eng. Vol. 21 (2008), p.31.

[23] W. Plazinski, J. Dziuba and W. Rudzinski. Adsorption Vol. 19 (2013), p.1055.

[24] J. Langmuir. J. Am. Chem. Soc. Vol. 40 (1918), p.1361.

[25] H.M.F. Freundlich. Z. Phys. Chem. Vol. 57 (1906), p.385.

[26] S.D. Faustt and A.M. Osman. Butterworth, Stoneham, MA (1987).

[27] S. Kundu and A.K. Gupta. Chem. Eng. J. Vol. 122 (2006), p.93.

[28] G.S. Kyzas and K.A. Matis. J. Mol. Liq. Vol. 203 (2015), p.159.

[29] A.O. Dada, A.P. Olalekan, A.M. Olatunya and O. Dada. IOSR-JAC Vol. 3 (2012), p.38.

Fetching data from Crossref.
This may take some time to load.