Computer-Aided Design of Composite Materials Using Reversible Multiscale Homogenization and Graph-Based Software Engineering

Abstract:

Article Preview

In this work, a new software for computer-aided design of composite materials with predefined thermomechanical properties is presented in case of incomplete input data. The mathematical basis of underlying computational method of the properties identification is a modified method of multiscale homogenization named reversible multiscale homogenization method. The system has a modular architecture and includes software implementation of the reversible multiscale homogenization method based on a new technique of construction of software implementations of complex computational methods. The latter was named «Graph-based software engineering» (GBSE) and is based on category and graph theories. The corresponding numerical and experimental results were obtained and compared. The expediency of GBSE approach is discussed for the case of the development of complex computational methods required when solving the applied problems of the design of new heterogeneous materials.

Info:

Periodical:

Edited by:

Marina Polyakova

Pages:

11-18

Citation:

A. P. Sokolov and A. Y. Pershin, "Computer-Aided Design of Composite Materials Using Reversible Multiscale Homogenization and Graph-Based Software Engineering", Key Engineering Materials, Vol. 779, pp. 11-18, 2018

Online since:

September 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Graeme W. Milton, The Theory of Composites. Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University Press, Cambridge, (2002), 719 p.

[2] M.F. Horstemeyer Multiscale Modeling: A Review. // Practical Aspects of Computational Chemistry / J. Leszczynski, M.K. Shukla. – Springer, (2010), pp.87-135.

[3] N.S. Bakhvalov, G.P. Panasenko Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Series Mathematics and its Applications, vol.36. Springer, (1989), 345 p.

DOI: https://doi.org/10.1007/978-94-009-2247-1_7

[4] N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives (Review). Applied Mechanics Reviews. Volume 63, Issue 3, (2010), pp.1-10.

[5] Yu.I. Dimitrienko, S.V. Sborshchikov, A.P. Sokolov, Numerical simulation of microdestruction and strength characteristics of spatially reinforced composites // Composites: Mechanics, Computations, Applications, An International Journal. Vol. 4, Issue 4, (2013).

DOI: https://doi.org/10.1615/compmechcomputapplintj.v4.i4.50

[6] Y.I. Dimitrienko, A.P. Sokolov, Y.V. Shpakova Computer-aided analysis of micromechanics and damage of composite materials based on multiscale homogenization method. Materials Research Society Symposium Proceedings. Vol. 1535, (2013), pp.105-111.

DOI: https://doi.org/10.1557/opl.2013.466

[7] A.M. Rodrigues, F. Bardella, Zuffo, M.K., Leal Neto, R.M. Integrated approach for geometric modeling and interactive visual analysis of grain structures. CAD Computer Aided Design. Volume 97, (2018), pp.1-14.

DOI: https://doi.org/10.1016/j.cad.2017.11.001

[8] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, M.Y. Ren Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design. Journal of Mechanical Design, Transactions of the ASME. Vol. 139, Issue 7, (2017).

DOI: https://doi.org/10.1115/1.4036649

[9] B.-K. Park, J.J. Kim A sharable format for multidisciplinary finite element analysis data. CAD Computer Aided Design. Vol. 44, Issue 7, (2012), pp.626-636.

DOI: https://doi.org/10.1016/j.cad.2012.02.005

[10] Jung-Seok Kim. Development of a user-friendly expert system for composite laminate design. Composite Structures. Vol. 79, (2007), p.76–83.

DOI: https://doi.org/10.1016/j.compstruct.2005.11.030

[11] E. Somogyi, A.A. Mansour, P.J. Ortoleva ProtoMD: A prototyping toolkit for multiscale molecular dynamics. Computer Physics Communications. Vol. 202, (2016), pp.337-350.

DOI: https://doi.org/10.1016/j.cpc.2016.01.014

[12] Y.I. Dimitrienko, A.A. Zakharov Computer technologies for adaptive mesh generation in SIGMA preprocessor. 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017 - Proceedings. (2017), pp.1-6.

DOI: https://doi.org/10.1109/icieam.2017.8076438

[13] P.A. Eremeykin, A.D. Zhargalova, S.S. Gavriushin A software system for thin-walled parts deformation analysis (Conference Paper). Proceedings of 1st International Conference of Artificial Intelligence, Medical Engineering, and Education (AIMEE 2017). Advances in Intelligent Systems and Computing. Moscow; Russian Federation. Vol. 658, (2018).

DOI: https://doi.org/10.1007/978-3-319-67349-3_24

[14] Y.G. Soloveichik, M.G. Persova, T.B. Epanchintseva et.al. Finite element code for 3D numerical analysis of thermoelastic stresses in nose caps of hypersonic flight vehicles. Proceedings of IFOST-2016. Information and Communication Technologies. (2016).

DOI: https://doi.org/10.1109/ifost.2016.7884127

[15] Alexander Sokolov, Anton Pershin, Vitaly Schetinin, Arseny Sapelkin Reversible multiscale homogenization of physical properties of heterogeneous medium using GBSE. Proceedings of 2017 ASRTU China-Russia International Conference on Intelligent Manufacturing (ASRTU-ICIM 2017), Harbin Institute of Technology, Harbin, China, (2017).

[16] A.P. Sokolov, A.Yu. Pershin, V.N. Schetinin, A.S. Sapelkin Reversivnaya mnogomasshtabnaya gomogenizaciya fiziko-mekhanicheskih harakteristik geterogennyh periodicheskih sred s ispol'zovaniem grafoorientirovannogo programmnogo podhoda (in Russian) [Reversible multiscale homogenization of physical properties of heterogeneous medium using graph-based software engineering]. Composites and Nanostructures. Vol.9, No. 3-4, (2017).

[17] Yu.I. Dimitrienko, A.P. Sokolov Chislennoe modelirovanie kompozitsionnykh materialov s mnogourovnevoi strukturoi [Numerical modeling of composite materials with a multilevel structure].Proceedings of the Russian Academy of Sciences. Physical series, Vol.75, Issue 1, (2011).

[18] Julian D. Cole Perturbation methods in applied mathematics. Blaisdell Publishing Company. (1968), 276 p.

[19] S. Awodey Category theory. Oxford University Press, (2010).

[20] Siemens Aktiengesellschaft (München, DE), Method and digital tool for engineering software architectures of complex cyber-physical systems of different technical domains. U.S. Patent 2016/0261466 A1, (2016).

[21] MUREX S.A.S. (FR), Parallelization and instrumentation in a producer graph oriented programming framework. Patent. WO 2008/064899, (2011).

[22] Mikael Mortensen, Hans Petter Langtangen, Garth N. Wells A FEniCS-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations. Advances in Water Resources, Vol. 34, Issue 9, (2011), pp.1082-1101.

DOI: https://doi.org/10.1016/j.advwatres.2011.02.013

[23] Web-site of project TensorFlow [Electronic resourse]. Available at: https://www.tensorflow.org/ (accessed 26.04.2018).

[24] E.A. Gavrilina, M.A. Zakharov, A.P. Karpenko et.al. Software System META-3 for Quantitative Evaluation of Student's Meta-competencies on the Basis of Analysis of his or her Behavior in Social Networking Services (Conference Paper). Proceedings of 12th International Symposium Intelligent Systems (INTELS 2016). Procedia Computer Science. Vol. 103, (2017).

DOI: https://doi.org/10.1016/j.procs.2017.01.012

[25] A.P. Sokolov, A.Yu. Pershin Software Tools for Development of Input Data Subsystems of Computer-Aided Engineering Complexes (In Russian), Programmnaya Ingeneria, Vol. 8, Issuae 12, (2017), pp.543-555.

DOI: https://doi.org/10.17587/prin.8.543-555

[26] Web-site of Graphviz project [Electronic resourse]. Available at: http://www.graphviz.org/pdf/dotguide.pdf (accessed 26.05.2018).

[27] Lawrence J. Broutman and Richard H. Krock. Composite Materials. Vol.7. Structural Design and Analysis. Part I. Edited by C.C. Chamis. New York, Academic Press, Inc., (1975), 366 p.