Numerical Modeling of Nanostructured Tube Produced by ECAP


Article Preview

— tailoring material properties to specific application requirements is one of the major challenges in materials engineering. Grain size is a key factor affecting physical and mechanical properties of polycrystals materials. Grain size reduction in the metals and alloys can be achieved using Equal channel angular pressing (ECAP) method. In this work, Nanostructure thin walled copper tube specimens with 1 mm wall thickness and 23mm diameter have been produced successfully with ECAP method using flexible polyurethane rubber pad to prevent the tube walls from collapsing. Furthermore, this paper details the development of a numerical simulation to analyse the fabrication of thin walled tube through ECAP process. A copper tube was pushed through a channel with a series of 90° bends. During each successive bend, the magnitude of plastic strains accumulate in the copper tube. A three dimensional numerical simulation was used to model the process and determine the extent of plastic deformation that takes place during each bend process. The numerical simulation was developed using the finite element (FE) code, ABAQUS V6.13, and analysed using the explicit solver.



Edited by:

Vladimir Khovaylo and Ghenadii Korotcenkov




F. Djavanroodi and F. Almufadi, "Numerical Modeling of Nanostructured Tube Produced by ECAP", Key Engineering Materials, Vol. 780, pp. 25-31, 2018

Online since:

September 2018




* - Corresponding Author

[1] Valiev RZ, Langdon TG. Prog. Mater. Sci. 2006; 51:881-981.

[2] Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG. Mater. Sci. Eng. A 1998; 257: 328-332.

[3] Aida T, Matsuki K, Horita Z and Langdon TG. Scr. mater. 2001; 44:575-579.

[4] Sajadi A, Ebrahimi M, Djavanroodi F. Materials Science and Engineering A 552 (2012) 97– 103.

[5] Djavanroodi F., Omranpour B., Sedighi M., Mat. and Manuf. Proc. (2013) 28 (3), 276-281.

[6] Borhani M., Djavanroodi F., Materials Science and Engineering: A (2012) 546, 1-7.

[7] Ma A, Nishida Y, Suzuki K, Shigematsu I, Saito N, Scr. Mater. 2005; 52:433-437.

[8] Purcek G, Saray O, Kul O, Karaman I, Yapici GG, Haouaoui M. Mater. Sci. Eng. A 2009; 517:97-104.

[9] Nagasekhar AV, Kim HS. Computational Mater. Sci. 2008; 43:1069-1073.

[10] Azushima A, Aoki K. Mater. Sci. Eng. A 2002; 337:45-49.

[11] Ebrahimi M., Gholipour H., Djavanroodi F, Materials Science and Engineering: A (2016) 650, 1-7.

[12] Nagasekhar AV, Chakkingal U, Venugopal P. J. Mater. Process. Technol. 2006; 173:53-60.

[13] Zangiabadi A, Kazeminezhad M. (TCP). Mater. Sci. Eng. A 2011; 528:5066-5072.

[14] G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Lett. 65 (2011) 3009–3012.

[15] F. Djavanroodi, A. A. Zolfaghari, and M. Ebrahimi. Kov. Mater, vol. 53, no. 1, p.27–34, (2015).

[16] F. Djavanroodi, A.A. Zolfaghari, M. Ebrahimi, K.M. Nikbin, Acta Metall. Sin. (2013) 26. 574-580.


[17] F. Djavanroodi, A.A. Zolfaghari, M. Ebrahimi, K.M. Nikbin, Acta Metall. Sin.(2014) 27. 95-100.


[18] F. Al-Mufadi, F. Djavanroodi, Arab J Sci Eng (2015) 40 (9) :2785–2794.

[19] eFunda, Typical Properties of Copper Alloys,, 2015. [Online]. Available:

[20] ABAQUS, Version 6.13., Dassault Systèmes, (2013).

[21] DOTMAR, Density of Plastics., [Online]. Available:

[22] H. J. Qi and M. C. Boyce. Mech. Mater., vol. 37, no. 8, p.817–839, Aug. (2005).