Microwave-Assisted Hydrothermal Synthesis of ZnFe2O4/TiO2 Composite and Photocatalytic Properties


Article Preview

In order to improve TiO2 photocatalytic activity ZnFe2O4/TiO2 nanocomposites with different ZnFe2O4 mass loading were produced. Obtained ZnFe2O4 nanoparticles were coupled with TiO2 via microwave-assisted hydrothermal method in order to improve photon absorption in a range of visible light. Prepared nanostructures were characterized with scanning electron microscopy and X-ray diffraction. Photocatalytic activity of prepared samples was investigated by degradation of methylene blue under different light sources – LED, Hg and Osram Vitalux lamps. ZnFe2O4 consists of spherical nanoparticles with average size of 15 nm. TiO2 spherical nanoparticles size is in a range of 30÷45 nm. The results show that doping TiO2 with ZnFe2O4 nanoparticles increases photocatalytic activity. Photocatalytic activity increases as mass loading of ZnFe2O4 decreases.



Main Theme:

Edited by:

Gundars Mežinskis, Līga Grase, Ruta Švinka, Ilona Pavlovska, Jānis Grabis, Kęstutis Baltakys and Irina Hussainova




P. Rodionovs et al., "Microwave-Assisted Hydrothermal Synthesis of ZnFe2O4/TiO2 Composite and Photocatalytic Properties", Key Engineering Materials, Vol. 788, pp. 102-107, 2018

Online since:

November 2018




* - Corresponding Author

[1] M. Nan et al., Recent developments in photocatalytic water treatment technology: A review, Water Res., 44 (2010) 2997–3027.

[2] S. Y. Lee, S. J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19 (2013) 1761–1769.

[3] T. B. Nguyen, R. Doong, Fabrication of highly visible-light-responsive ZnFe2O4/TiO 2 heterostructures for the enhanced photocatalytic degradation of organic dyes, RSC Adv., 6 (2016), 103428–103437.

DOI: https://doi.org/10.1039/c6ra21002c

[4] Q. Xu, J. Feng, L. Li, Q. Xiao, J. Wang, Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst, J. Alloys Compd., 641 (2015) 110–118.

[5] S. Xie, K. Ouyang, Y. Lao, P. He, Q. Wang, Heterostructured ZnFe2O4/TiO2 nanotube arrays with remarkable visible-light photoelectrocatalytic performance and stability, J. Colloid Interface Sci., 493 (2017) 198–205.

[6] J. X. Qiu, Z. H. Li, H. Zhang, Photocatalytic properties and optical absorption of ZnFe2O 4 doped TiO2 films, Surf. Eng., 24 (2008) 240–241.

[7] J. Lei, Q. Shao, X. Wang, Q. Wei, L. Yang, H. Li, ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light, 95 (2017) 253–260.

DOI: https://doi.org/10.1016/j.materresbull.2017.07.048

[8] T. Tabari, D. Singh, S. S. Jamali, Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation, J. Environ. Chem. Eng., 5 (2017) 931–939.

DOI: https://doi.org/10.1016/j.jece.2017.01.016

[9] P. Cheng, W. Li, T. Zhou, Y. Jin, M. Gu, Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation, J. Photochem. Photobiol. A Chem., 168 (2004) 97–101.

DOI: https://doi.org/10.1016/j.jphotochem.2004.05.018

[10] A. Sutka, G. Mezinskis, A. Pludons, Characterization of sol – gel auto-combustion derived spinel ferrite nano-materials, Energetika, 3 (2010) 254–259.

[11] C. Hu, Z. Gao, X. Yang, One-pot low temperature synthesis of MFe2O4 (M=Co, Ni, Zn) superparamagnetic nanocrystals, J. Magn. Magn. Mater., 320 (2008) 70–73.

DOI: https://doi.org/10.1016/j.jmmm.2007.12.006

[12] P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, S. J. Das, Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route, Optik (Stuttg)., 134 (2017) 99–108.

DOI: https://doi.org/10.1016/j.ijleo.2017.01.018

[13] X. Zhu et al., Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2, Appl. Surf. Sci., 319 (2014) 83–89.

[14] J. Yang, X. Li, X. Deng, Z. Huang, Y. Zhang, Salt-assisted solution combustion synthesis of ZnFe2O4 nanoparticles and photocatalytic activity with TiO2 ( P25 ) as nanocomposite, 2 (2012) 579–583.

DOI: https://doi.org/10.2109/jcersj2.120.579