Solar Energy Absorbing Materials that are Capable of Withstanding Long-Term Exposure at 600 °C: Research Strategy

Abstract:

Article Preview

Pipes for parabolic-trough solar energy collectors (PTSC) must be able to operate and withstand high temperatures in corrosive environments for a long time without changing its microstructure and losing its original properties. The stages of development of a new material and technology for solar energy collectors that allows the production of a PTSC solar energy-absorbing material that is capable of withstanding temperatures ≥ 600 °C for at least 250 days are described. This material is a glass-crystalline enamel coating that is adhered to tubular stainless steel pipes. Such enamel coatings have high coefficients of thermal expansion (CTE) that are similar to the metal surface. These matching CTEs allow the enamel coatings to resist flaking during the heating at 900 °C. The high-temperature resistance of the developed coating was ensured not only by specific additives added to the frit of the coating but also by an additional nanosized sol-gel coating over the enamelled metal substrate.

Info:

Periodical:

Main Theme:

Edited by:

Gundars Mežinskis, Līga Grase, Ruta Švinka, Ilona Pavlovska, Jānis Grabis, Kęstutis Baltakys and Irina Hussainova

Pages:

126-134

Citation:

I. Pavlovska et al., "Solar Energy Absorbing Materials that are Capable of Withstanding Long-Term Exposure at 600 °C: Research Strategy", Key Engineering Materials, Vol. 788, pp. 126-134, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] W. Glaubitt, P. Löbmann. Antireflective coatings prepared by sol-gel processing: Principles and applications. J. Eur. Ceram. Soc. 32 (2012) 2995-2999.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.02.032

[2] Jindi Wang, Juanjuan Ge, Haigang Hou, Mingsong Wang, Guiwu Liu, Guanjun Qiao, Yongsheng Wang. Design and sol-gel preparation of SiO2/TiO2 and SiO2/SnO2/SiO2-SnO2 multilayer antireflective coatings. Appl. Surf. Sci. 422 (2017) 970-974.

DOI: https://doi.org/10.1016/j.apsusc.2017.06.133

[3] Duhua Wang, G.P. Bierwagen. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 64 (2009) 327-338.

DOI: https://doi.org/10.1016/j.porgcoat.2008.08.010

[4] Rong-Gang Hu, Su Zhang, Jun-Fu Bu, Chang-Jian Lin, Guang-Ling Song. Review: Recent progress in corrosion protection of magnesium alloys by organic coatings. Prog. Org. Coat.73 (2012) 129-141.

DOI: https://doi.org/10.1016/j.porgcoat.2011.10.011

[5] R.B. Figueira, I.R. Fontinha, C.J.R. Silva, E.V. Pereira. Hybrid sol‐gel coatings: smart and green materials for corrosion mitigation. Coatings 6 (2016) 12.

DOI: https://doi.org/10.3390/coatings6010012

[6] L.F. Pinho Elhaddad, D.S. Facio, M.J. Mosquera. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl. Surf. Sci. 275 (2013) 389-396.

DOI: https://doi.org/10.1016/j.apsusc.2012.10.142

[7] F. Gherardi, A. Colombo, M. D'Arienzo, B. Di Credico, S. Goidanich, F. Morazzoni, R. Simonutti, L. Toniolo. Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchem. J. 126 (2016).

DOI: https://doi.org/10.1016/j.microc.2015.11.043

[8] Cabinet Regulations N°129. Energy Development Guidelines for the Years 2016–2020. Latvijas Vēstnesis 32 (5604): 201 /32.1, 16.02.(2016).

[9] Dhyia Aidroos Baharoon, Hasimah Abdul Rahman, Wan Zaidi Wan Omar, Saeed Obaid Fadhl. Historical development of concentrating solar power technologies to generate clean electricity efficiently. Renew. Sust. Energ. Review 41 (2015) 996-1027.

DOI: https://doi.org/10.1016/j.rser.2014.09.008

[10] O.H. Andersson, C.G. Granqvist. Nickel pigmented anodic aluminium oxide for selective absorption of solar energy. J.Appl.Pysics 51 (1980) 754.

DOI: https://doi.org/10.1063/1.327337

[11] K. Vignarooban, Xinhai Xu, A. Arvay, K. Hsu, A.M. Kannan. Heat transfer fluids for concentrating solar power systems – A review. Appl. Energ. 146 (2015) 383-396.

DOI: https://doi.org/10.1016/j.apenergy.2015.01.125

[12] C. Atkinson, C.L. Sansom, H.J. Almond, C.P. Shaw. Coatings for concentrating solar systems. Renew. Sust. Energ. Reviews 45 (2015) 113-122.

[13] Arancibia-Bulnes C.A., Estrada C.A., Ruiz-Suirez J.C. Solar absorptance and thermal emittance of cermets with large particles. J.Phys.D: Appl. Phys. 33 (2000) 2489-2496.

DOI: https://doi.org/10.1088/0022-3727/33/19/320

[14] R. Karmhag, T. Tesfamicael, G.A. Niklasson, E. Wackelgard, M. Nygren. Oxidation kinetics of nickel solar absorber nanoparticles. J.Phys.D: Appl. Phys. 34 (2001) 400-406.

DOI: https://doi.org/10.1088/0022-3727/34/3/325

[15] H.J. Brown-Shaklee, W. Carty, D.D. Edwards. Spectral selectivity of composite enamel coatings on 321 stainless steel. Sol. Energy. Mater. Sol. Cells 93 (2009) 1404-1410.

DOI: https://doi.org/10.1016/j.solmat.2009.03.009

[16] Valleti K., Krishna D.M., Reddy P.M., Joshi S. V. High temperature stable solar selective coatings by cathodic arc PVD for heat collecting elements. Sol. Energy. Mater. Sol. Cells 145 (2016) 447-453.

DOI: https://doi.org/10.1016/j.solmat.2015.11.012

[17] H.D. Liu, Q. Wan, Y.R. Xu, C. Luo, Y.M. Chen, D.J. Fu, F. Ren, G. Luo, X.D. Cheng, X.J. Hu, B. Yang. Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air. Sol. Energy. Mater. Sol. Cells 134 (2015).

DOI: https://doi.org/10.1016/j.solmat.2014.12.009

[18] K. Malnieks, G. Mezinskis, I. Pavlovska, L. Bidermanis, A. Pludons. Optical, Photocatalytical and Structural Properties of TiO2-SiO2 Sol-Gel Coatings on High Content SiO2 Enamel Surface. Mater. Sci. 21/1 (2015) 100-104.

DOI: https://doi.org/10.5755/j01.ms.21.1.5188

[19] А. Петгольц, Г. Пешманн. Эмаль и эмалирование. Металлургия (1990).

[20] L. Bīdermanis, J. Eiduks, P. Paukšs. Emalja tēraudam. N°391082, MKL CO3C 704 (1973).

[21] L. Bīdermanis, J. Liepiņš, G. Mežinskis, A. Cimmers, I. Pavlovska. Masa emalju tipa pārklājumam uz tērauda. LR Patents LV14401 B.Jnt.Cl.C03C 8/00, C23D 5/00 (2011).

[22] J. Liepiņš, L. Bīdermanis, G. Mežinskis, I. Pavlovska, A. Cimmers, L. Lindiņa. Masa stikla-kristāliskas emaljas pārklājumam uz tērauda. LR Patents LV14504 B.Int.Cl C03C 8/00, C2390 1/00 (2012).

[23] L. Bīdermanis, J. Liepiņš, G. Mežinskis, I. Pavlovska, A. Cimmers, L. Lindiņa Masa kristāliskas emaljas pārklājumam uz tērauda. LR Patents LV14646A. Int.Cl C03C 8/00 (2013).

[24] G. Mezinskis, I. Pavlovska, L. Bidermanis A. Cimmers, J. Liepins, K. Malnieks, J. Gabrusenoks. EP 2 871 168 (B1) Mass of silicate enamel coating on steel. Publ. 21.12. (2016).

[25] J. Kalnačs, V. Grehovs, G. Mežinskis, L. Bidermanis. A calorimetric method for determination of heat capacity of ceramics for concentrated solar thermal systems. Latvian J. Phys. Tech. Sci. 5 (2013) 68-73.

DOI: https://doi.org/10.2478/lpts-2013-0034

[26] I. Pavlovska, K. Malnieks, G. Mezinskis, L. Bidermanis, M. Karpe. Hard TiO2-SiO2 Sol-gel coatings for enamel against chemical corrosion. Surf. Coat.Tech. 258 (2014) 206-210.

DOI: https://doi.org/10.1016/j.surfcoat.2014.09.027

[27] K. Malnieks, G. Mezinskis, I. Pavlovska. Effect of Different Dip-Coating Techniques on TiO2 Thin Film Properties. Key Eng. Mater. 721 (2017) 128-132.

DOI: https://doi.org/10.4028/www.scientific.net/kem.721.128

[28] G. Mezinskis, I. Pavlovska, K. Malnieks, L. Bidermanis, A. Cimmers, P. Onufrijevs. Sol-Gel Coated Enamel for Steel: 250 Days of Continuous High-Temperature Stability. Ceram. Int. 43 (2017) 2977-2983.

DOI: https://doi.org/10.1016/j.ceramint.2016.11.060

[29] K. Malnieks, G. Mezinskis, I. Pavlovska, L. Bidermanis, A. Pludons. Black Enamel for Concentrated Solar-Power Receivers. Ceram. Int. 40 (8) Part B (2014) 13321-13327.

DOI: https://doi.org/10.1016/j.ceramint.2014.05.046