FTIR Analysis of Electron Irradiated Single and Multilayer Si3N4 Coatings


Article Preview

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal intensities and position in spectra, showing to good radiation stability of the single and multi layered Si3N4 nanolayers.



Main Theme:

Edited by:

Gundars Mežinskis, Līga Grase, Ruta Švinka, Ilona Pavlovska, Jānis Grabis, Kęstutis Baltakys and Irina Hussainova




L. Avotina et al., "FTIR Analysis of Electron Irradiated Single and Multilayer Si3N4 Coatings", Key Engineering Materials, Vol. 788, pp. 96-101, 2018

Online since:

November 2018




* - Corresponding Author

[1] S. T. Patton, J. S. Zabinski, Effects of dielectric charging on fundamental forces and reliability in capacitive microelectromechanical systems radio frequency switch contacts, Journal of Applied Physics, 99 (2006) 094910, 1-11.

DOI: https://doi.org/10.1063/1.2194125

[2] A. Dasmahapatra, P. Kroll, Modelling amorphous silicon nitride: A comparative study of Empirical potentials, Computational Materials Science, 148 (2018) 165-175.

DOI: https://doi.org/10.1016/j.commatsci.2017.12.008

[3] P. Mandracci, F. Frascella, R. Rizzo, A. Virga, P. Rivolo, E. Descrovi, F. Giorgis, Optical and structural properties of amorphous silicon-nitrides and silicon-oxycarbides: Application of multilayer structures for the coupling of Bloch Surface Waves, Journal of Non-Crystalline Solids 453 (2016).

DOI: https://doi.org/10.1016/j.jnoncrysol.2016.10.002

[4] Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, T. Ohji, K. Hirao, Development of high-thermal-conductivity silicon nitride ceramics, Journal of Asian Ceramic Societies, 3 (2015) 221-229.

DOI: https://doi.org/10.1016/j.jascer.2015.03.003

[5] G. Scradera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effects of annealing temperature on the photoluminiscence from silicon nitride multilayer structures, Journal of Crystal Growth, 310 (2008) 3680-3684.

DOI: https://doi.org/10.1016/j.jcrysgro.2008.05.018

[6] M. Favetta, A.Valleta, G. Forunato, M. E. Castagna, S. Conoci, E.L. Sciuto, T. Cosentino, F. Sinatra, S. Libertino, Development of Si-based electrical biosensors:Simulations and first experimental results,, Sensing and Bio-Sensing Research, 6, pp.72-78, (2015).

DOI: https://doi.org/10.1016/j.sbsr.2015.11.012

[7] P. Saengdee, W. Chaisriratanakul, W. Bunjongpru, W. Sripumkhai, A. Srisuwan, W. Jeamsaksiri, C. Hruanun, A. Poyai, Ch. Promtmas, Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization, Biosensors and Bioelectronics, 67 (2015).

DOI: https://doi.org/10.1016/j.bios.2014.07.057

[8] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films, Physical Review B, 28, 6 (1983) 3234-3240.

DOI: https://doi.org/10.1103/physrevb.28.3234

[9] F. Fraykorova, K. Bodisova, M. Bohac, E. Bartonickova, J. Sedlacek, Preparation and characterization of porous composite biomaterials based on silicon nitride and bioglass, Ceramics International, 41 (2015) 9770-9778.

DOI: https://doi.org/10.1016/j.ceramint.2015.04.049

[10] L. Khomenkova, P. Normand, F. Gourbilleau, A. Slaoui, C. Bonafos, Optical, structural and electrical characterizations of stacked Hf-based and silicon nitride dielectrics, Thin Solid Films, 617 (2016) 143-149.

DOI: https://doi.org/10.1016/j.tsf.2016.04.036

[11] P. Calta, P. Sutta, R. Medlin, M. Netrvalova, Impact of sublyer thickness and annealing on silicon nanostructures formation in a-Si:H/a-SiNx:H superlattices for photovoltaics, Vacuum, 153 (2018) 154-161.

DOI: https://doi.org/10.1016/j.vacuum.2018.04.009

[12] Sh. Yokoyama, N. Ikeda, K. Kajikawa, Y. Nakashima, Atomic layer deposition of silicon nitride on hydrogen-terminated Si surfaces, Applied Surface Science, 130-132 (1998) 532-536.

DOI: https://doi.org/10.1016/s0169-4332(98)00083-x

[13] H.-Y. Kwak, S.-K. Kwon, H.-M. Kwon, S.Y. Sung, S. Lim, Ch.-Y. Kim, G.-W. Lee, H.-D. Lee, Characterization of Dielectric Relaxation and Realibility of High-k MIM Capacitor Under Constant Voltage Stress, Journal of Semiconductor Technology and Science, 14, 5 (2014).

DOI: https://doi.org/10.5573/jsts.2014.14.5.543

[14] A. H. Johnston, Radiation Damage of Electronic and Optoelectronic Devices in Space, in 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, (2000).

[15] D. Zhou, D. O'Sullivan, E. Semones, W. Heinrich, Radiation field of cosmic rays measured in low Earth orbit by CR-39 detectors, Advances in Space Research, 37 (2006) 1764-1769.

DOI: https://doi.org/10.1016/j.asr.2004.08.009

[16] S. T. Patton, A.J. Frasca, J.W. Talnagi, D. J. Hyman, B. S. Phillips, J.G. Jones, R.A. Vaia, A.A. Voevodin, IEEE members, Effect of space radiation on the leakage current of MEMS insulators, IEEE transactions on nuclear science, 60 (2013).

DOI: https://doi.org/10.1109/tns.2013.2263840

[17] S. Kayali, Reliability of compound semiconductor devices for space applications, Microelectronics Reliability, 39 (1999) 1723-1736.

DOI: https://doi.org/10.1016/s0026-2714(99)00180-8

[18] S. J. Zinkle, V.A. Skuratov, D.T. Hoelzer, On the conflicting roles of ionizing radiation in ceramics, Nuclear Instruments and Methods in Physics Reseach B, 191 (2002) 758-766.

DOI: https://doi.org/10.1016/s0168-583x(02)00648-1

[19] M. Mastalerz, R. M. Bustin, Application of reflectance micro-Fourier transform infrared spectrometry in studying coal macerals: comparison with other Fourier transform infrared techniques, Fuel, 74, 4 (1995) 536-542.

DOI: https://doi.org/10.1016/0016-2361(95)98356-j

[20] E.V. Astrova, V.A. Tolmachev, Effective refractive index and composition of oxidized porous silicon films, Materials Science and Engineering, B69-70 (2000) 142-148.

DOI: https://doi.org/10.1016/s0921-5107(99)00236-6

[21] J. W. Swart, J.A. Diniz, I. Doi, M.A.B. de Moares, Modification of the refractive index and the dielectric constant of silicon dioxide by means of ion implantation, Nuclear Instruments and Methods in Physics Research B 166167 (2000) 171-176.

DOI: https://doi.org/10.1016/s0168-583x(99)00650-3

[22] E. R. Lippincott, A. Van Valkenburg, Ch. E. Weir, E. N. Buntig, Infrared Studies on Polymorphs of Silicon Dioxide and Germanium Dioxide, Journal of Research of the National Bureau of Standards, 61, 1, (1958) 2885, 61-70.

DOI: https://doi.org/10.6028/jres.061.009

[23] D. B. Mawhinney, J.A. Glass, Jr., and J.T. Yates, Jr., FTIR Study of the Oxidation of Porous Silicon, technical report, (1996).

[24] G. Xu, P.Jin, M. Tazawa, K. Yoshimura, Optical investigation of silicon nitride thin films deposited by r.f. magnetron sputtering, Thin Solid Films, 425 (2003) 196-202.

DOI: https://doi.org/10.1016/s0040-6090(02)01089-1

[25] E. Cianci, A. Schina, A. Minotti, S. Quaresima, V. Foglietti, Dual frequency PECVD silicon nitride for fabrication of CMUTs'membranes, Sensors and Actuators A, 127 (2006) 80-87.

DOI: https://doi.org/10.1016/j.sna.2005.11.053

[26] L. A. Walsh, Sh. Mohammed, S. C. Sampat, Y. J. Chabal, A. V. Malko, Ch. L. Hinkle, Oxide-related defects in quantum dot containing Si-rich silicon nitride films, Thin Solid Films, 636 (2017) 267-272.

DOI: https://doi.org/10.1016/j.tsf.2017.06.022

[27] S. M. Hu, Properties of Amorphous Silicon Nitride films, Journal of the Electrochemical Society, 113, 7 (1966) 693-698.