Stochastic Resonance in Bioinspired Electronic Device Using Polymer Field Effect Transistors


Article Preview

Stochastic resonance (SR) phenomenon is emerged in organic field effect transistors (OFETs) using $\pi$-conjugated polymer, where application of external noise to the OFET system enhances signal/information processing performance which is often found in biological systems.The channel conductivity of the OFET is slightly increased by spin-coating using heated semiconductor polymer solution with heated glass substrate.In order to improve frequency responses of OFET, optimal width of the gate electrode is explored. Furthermore, it turns out that scratching and removing semiconductor film outside the source-drain electrodes and the channel enhances the On-Off current ratio of the device. These fabrication processes lead to steeper nonlinearity on the $I_{\rm DS}$ {\it vs.} $V_{\rm GS}$ curve, resulting in emergence of SR, which is fingerprinted in increase of correlation value between input and output signals with increase of intensity of external noise.



Edited by:

Osamu Hanaizumi




Y. Suzuki et al., "Stochastic Resonance in Bioinspired Electronic Device Using Polymer Field Effect Transistors", Key Engineering Materials, Vol. 790, pp. 20-27, 2018

Online since:

November 2018




* - Corresponding Author

[1] C.Y. Wei, F. Adriyanto, Y.J. Lin, Y.C. Li, T.J. Huang, D.W. Chou, and Y.H. Wang: IEEE Electron Device Lett. Vol. 30 (2009), p.1039.

[2] A. Facchetti: Chem. Mater. Vol. 23 (2011), p.733.

[3] J. Zaumseil and H. Sirringhaus: Chem. Rev. Vol. 107 (2007), p.1296.

[4] G. Gelinck, P. Heremans, K. Nomoto and T.D. Anthopoulos: Adv. Mater. Vol. 22 (2010), p.3778.

[5] N. Asakawa, K. Umemura, S. Fujise, K. Yazawa, T. Shimizu, M. Tansho, T. Kanki and H. Tanaka: J. Nanophotonics Val. 8 (2014), p.083077.


[6] J.K. Douglass, L. Wilkens, E. Pantazelou and F. Moss: Nature Vol. 365 (1993), p.337.

[7] S.M. Bezrukov and I. Vodyanoy: Nature Vol. 378 (1995), p.362.

[8] J. Levin and J. Miller: Nature Vol. 380 (1996), 165.

[9] D.F. Russell, L. A. Wilkens and F. Moss: Nature Vol. 402 (1999), p.291.

[10] B.J. Gluckman, T.I. Netoff, E.J. Neel, W.L. Ditto, M.L. Spano and S.J. Schiff: Phys. Rev. Lett. Vol. 77 (1996), p.4098.

[11] S. Kasai and T. Asai: Appl. Phys. Express Vol. 1 (2008), p.083001.

[12] S. Kasai, K. Miura and Y. Shiratori: Appl. Phys. Lett. Vol. 96 (2010), p.194102.

[13] K. Nishiguchi and A. Fujiwara: Jpn. J. Appl. Phys., Part 1 Vol. 50 (2011), p. 06GF04.

[14] I.Y. Lee, X. Liu, B. Kosko and C. Zhou: Nano Lett. Vol. 3 (2003), p.1683.

[15] I. Lee, X. Liu, C. Zhou and B. Kosko: IEEE Trans. Nanotechnol. Vol. 5 (2006), p.613.

[16] Y. Hakamata, Y. Ohno, K. Maehashi, S. Kasai, K. Inoue and K. Matsumoto: J. Appl. Phys. Vol. 108 (2010), p.104313.

[17] Y. Hakamata, Y. Ohno, K. Maehashi, K. Inoue, and K. Matsumoto: Appl. Phys. Express Vol. 4 (2011), p.045102.

[18] T. Kanki, Y. Hotta, N. Asakawa, T. Kawai and H. Tanaka: Appl. Phys. Lett. Vol. 96 (2010), p.242108.

[19] Y. Suzuki, K. Matsubara and N. Asakawa: Appl. Phys. Lett. Vol. 109 (2016), p.093702.

[20] L. Gammaitoni, P. ¨Hanggi, P. Jung and F. Marchesoni: Rev. Mod. Phys. Vol.70 (1998), p.223.

[21] H. Sirringhaus: Advanced Materials Vol. 17 (2005), p.2411.

[22] C. Tanase, E.J. Meijer, P.W.M. Blom and D.M. de Leeuw: Phys. Rev. Lett. Vol. 91 (2003), p.216601.

[23] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig and D.M. de Leeuw: Nature Vol. 01 (1999), p.685.


[24] B. Peng, X. Ren, Z. Wang,X. Wang, R.C. Roberts and P.K. Chan: Scientific reports Vol. 4 (2014), p.6430.

[25] A. Klug, A. Meingast, G. Wurzinger, A. Bl¨umel, K. Schmoltner, U. Scherf and E.J.W List: Proc. SPIE 811809 (2011).

[26] J.J. Collins, C.C. Chow, A.C. Capela and T.T. Imhoff: Phys. Rev. E Vol. 54 (1996), p.5575.