Ionic Conduction Response under Extending-Deformation of β-AgI Thin Films

Abstract:

Article Preview

Tensile stress was applied to β-AgI thin film prepared on a polyethylene terephthalate film, and the ion conduction response in the direction of the tensile extension was investigated. The ionic conductivity of the β-AgI thin film decreases and the activation energy for ionic conduction increases with increasing extension ratio. This behaviour is attributed to the modulation of the crystal framework by the extension of the AgI thin film.

Info:

Periodical:

Edited by:

Osamu Hanaizumi

Pages:

3-8

Citation:

S. I. Furusawa and T. Ida, "Ionic Conduction Response under Extending-Deformation of β-AgI Thin Films", Key Engineering Materials, Vol. 790, pp. 3-8, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] B. Morosin and P. S. Peercy, Pressure-induced phase transition in beta-eucryptite (LiAlSiO4), Phys. Lett. A 53 (1975) 147–148.

DOI: https://doi.org/10.1016/0375-9601(75)90506-x

[2] G. A. Samara, Pressure and temperature dependences of the ionic conductivities of cubic and orthorhombic lead fluoride (PbF2), J. Phys. Chem. Solids 40 (1979) 509–522.

DOI: https://doi.org/10.1016/0022-3697(79)90079-9

[3] G. A. Samara, High-Pressure Studies of Ionic Conductivity in Solids, Solid State Phys. 38 (1984) 1–80.

[4] J. Zhang, J. Ko, R. M. Hazen and C. T. Prewitt, High-pressure crystal chemistry of KAlSi3O8 hollandite, Am. Mineralogist 78 (1993) 493–499.

[5] A. Yagi, T. Suzuki, M. Akaogi, High Pressure Transitions in the System KAlSi3O8-NaAlSi3O8, Phys. Chem. Miner. 21 (1994) 12–17.

DOI: https://doi.org/10.1007/bf00205210

[6] S. Furusawa, H. Sugiyama, F. Itoh, A. Miyamoto and T. Sasaki, Ionic Conductivity of Quasi-One-Dimensional Ionic Conductor KTiOPO4 (KTP) Single Crystal at High Pressure, J. Phys. Soc. Jpn. 69 (2000) 2087–(2091).

DOI: https://doi.org/10.1143/jpsj.69.2087

[7] A. Hao, C. Gao, M. Li, C. He, X. Huang, G. Zou, Y. Tian and Y. Ma, Conductivity of AgI under high pressure, J. Appl. Phys. 101 (2007) 053701.

[8] T. Katsumata, Y. Inaguma, M. Itoh and K. Kawamura, Influence of Covalent Character on High Li Ion Conductivity in a Perovskite-Type Li Ion Conductor: Prediction from a Molecular Dynamics Simulation of La0.6Li0.2TiO3, Chem. Mater. 14 (2002).

DOI: https://doi.org/10.1021/cm0203969

[9] F. Bruneta, N. Bagdassarov and R. Miletich, Na3Al2(PO4)3, a fast sodium conductor at high pressure, Solid State Ionics 159 (2003) 35–47.

[10] R. J. Cava and E. A. Rietman, Ionic conductivity of b-AgI, Phys. Rev. B30 (1984) 6896-6902.

DOI: https://doi.org/10.1103/physrevb.30.6896

[11] C. C. Liang, Conduction Characteristics of the Lithium Iodide-Aluminum Oxide, Solid ElectrolytesJ. Electrochem. Soc. 120 (1973) 1289-1292.

DOI: https://doi.org/10.1149/1.2403248

[12] K. Shahi and J. B. Wagner, Jr., Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: AgI Al2O3, AgI SiO2, AgI Fly ash, and AgI AgBr, J. Solid State Chem. 42 (1982) 107-119.

DOI: https://doi.org/10.1016/0022-4596(82)90256-0

[13] J. B. Wagner, Jr., Transport in compounds containing a dispersed second phase, Matter. Res. Bull. 15 (1980) 1691-1701.

[14] S. Furusawa and Y. Sakai, Ionic Conductivity of AgI Films on TGS Single Crystal Substrates, J. Phys. Soc. Jpn. 68 (1999) 976-980.

DOI: https://doi.org/10.1143/jpsj.68.976

[15] S. Furusawa and T. Kawaguchi, Ionic Conductivity of AgI Films on the SiO2 Glass Substrates, J. Phys. Soc. Jpn. 70 (2001) 3585-3590.