Effect of Low Temperature Steel Ball Peening on the Hardness of SS 316L

Abstract:

Article Preview

The aim of this research is to investigate the hardness of implant material Stainless Steel (SS) 316L due to ball peening at low temperature. In this paper, SS316L ball peening was conducted in various cryogenic temperature. The steel ball peening mechanism was bombarded on metal surface using peening ball. The shot peening treatment was performed for 10 minutes using steel balls with the size of 5 mm and 6 Bar compressed air flow. The treatment temperatures were carried out at-35°C, -45°C, and-55°C respectively. The results show that the hardness of SS316L after steel ball peening processes increasing as decreasing temperature treatment.

Info:

Periodical:

Edited by:

Al Emran Ismail, Muhamad Zaini Yunos, Reazul Haq Abdul Haq and Said Ahmad

Pages:

105-110

Citation:

T. D. Widodo et al., "Effect of Low Temperature Steel Ball Peening on the Hardness of SS 316L", Key Engineering Materials, Vol. 791, pp. 105-110, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] C. P. Bergmann, A. Stumpf, Dental Ceramics, Springer-Verlag, Heidelberg, Berlin, (2013).

[2] R. Honeycombe, Bhadeshia, H.K.D.H. Steels, Microstructure and properties, 2nd Ed.; Gray Publishing, Tunbridge Wells, Kent, (1995).

[3] A.J. Sedriks, Corrosion of Stainless Steels, 2nd Ed., Wiley, New York, (1996).

[4] Dettner, P. Electrolytic and Chemical Polishing of Metals, Ordentlich Publishers, Tel Aviv, (1988).

[5] C. Aparicio, F. Javier Gil, C, Fonseca, M. Barbosa, J.A. Planell, Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications, Biomater. 24 (2003) 263-273.

DOI: https://doi.org/10.1016/s0142-9612(02)00314-9

[6] A. Arvidsson, B.A. Sater, A. Wennerberg, The role of functional parameters for topographical characterization of boneanchored implants, Clin. Implant Dent. Relat. Res. 8 (2006) 70-76.

DOI: https://doi.org/10.1111/j.1708-8208.2006.00001.x

[7] V. Barranco, M.L. Escudero, M.C. García-Alonso, 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behaviour, Electrochim. Acta, 52 (2007) 4374-4384.

DOI: https://doi.org/10.1016/j.electacta.2006.12.031

[8] V. Barranco, E. Onofre, M.L. Escudero, M.C. García-Alonso, Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation, surf. coat. technol. 204 (2010) 3783-3793.

DOI: https://doi.org/10.1016/j.surfcoat.2010.04.051

[9] M. Multigner, S. Ferreira-Barragáns, E. Frutos, M. Jaafar, J. Ibáñez, P. Marín, M.T. Pérez-Prado, G. González-Doncel, A. Asenjo, J.L. González-Carrasco, Superficial severe plastic deformation of 316 lvm stainless steel through grit blasting: effects on its microstructure and subsurface mechanical properties, Surf. Coat. Technol. 205 (2010) 1830-1837.

DOI: https://doi.org/10.1016/j.surfcoat.2010.07.126

[10] M. Multigner, E. Frutos, J.L. González-Carrasco, J.A. Jiménez, P. Marín, J. Ibáñez, Influence of the sandblasting on the subsurface microstructure of 316LVM stainless steel: Implications on the magnetic and mechanical properties, Mater. Sci. Eng., C. 29 (2009) 1357-1360.

DOI: https://doi.org/10.1016/j.msec.2008.11.002

[11] M. Faller, S. Buzzi, O. Trzebiatowski, Corrosion behaviour of glass-bead blasted stainless steel sheets and other sheets with dull surface finish in a chloride solution, Mater. Corros. 56 (2005) 373-378.

DOI: https://doi.org/10.1002/maco.200403846

[12] F. Otsubo, K. Kishitake, T. Akiyama, T. Terasaki, Characterization of blasted austenitic stainless steel and its corrosion resistance, J. Therm. Spray Technol. 12 (2003) 555-559.

DOI: https://doi.org/10.1361/105996303772082305

[13] A. Rhouma, H. Sidhom, C. Braham, J. Lédion, M. Fitzpatrick, Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels, J. Mater. Eng. Perform. 10 (2001) 507-514.

DOI: https://doi.org/10.1361/105994901770344638

[14] V. Azar, B. Hashemi, M. Rezaee Yazdi, The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer's solution, Surf. Coat. Technol. 204 (2010) 3546-3551.

DOI: https://doi.org/10.1016/j.surfcoat.2010.04.015

[15] S.B. Mahagaonkar, P.K. Brahmankar, C.Y. Seemikeri, Effect on fatigue performance of shot peened components: An analysis using DOE technique, Int. J. Fatigue. 31 (2009) 693-702.

DOI: https://doi.org/10.1016/j.ijfatigue.2008.03.020

[16] G. F. Javier, J.A. Planell, A. Padrós, C. Aparicio, The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications, Dent. Mater. 23 (2007) 486-491.

DOI: https://doi.org/10.1016/j.dental.2006.03.003

[17] X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.S. Man, M.J. Shepard, T. Zhai, Enhancement of fatigue and corrosion properties of pure Ti by sandblasting, Mater. Sci. Eng., A. 429 (2006) 30-35.

DOI: https://doi.org/10.1016/j.msea.2006.04.024

[18] A. Piattelli, M. Degidi, M. Paolantonio, C. Mangano, A. Scarano, Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration, Biomater. 24 (2003) 4081- 4089.

DOI: https://doi.org/10.1016/s0142-9612(03)00300-4

[19] A. Wennerberg, T. Albrektsson, C. Johansson, B. Andersson, Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography, Biomater. 17 (1996) 15-22.

DOI: https://doi.org/10.1016/0142-9612(96)80750-2

[20] K. Gotfredsen, A. Wennerberg, C. Johansson, L.T. Skovgaard, E. Hjorting-Hansen, Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits, J. Biomed. Mater. Res. 29 (1995) 1223-1231.

DOI: https://doi.org/10.1002/jbm.820291009

[21] T. Konkova, S. Mironov, A. Korznikov, G.Korznikova, M.M. Myshlyaev, S.L. Semiatin, Effect of cryogenic temperature and change of strain path on grain refinement during rolling of Cu–30Zn brass, Mater. Des., 86 (2015) 913–921.

DOI: https://doi.org/10.1016/j.matdes.2015.06.146

[22] J. Liu, G. Li, D. Chen, Z. Chen, Effect of Cryogenic Treatment on Deformation Behavior of As-cast AZ91 Mg Alloy, Chin. J. Aeronaut. 25 (2012) 931-936.

DOI: https://doi.org/10.1016/s1000-9361(11)60464-0