FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Method


Article Preview

Composites material were developed to acquire the desired material properties for biomedical applications in the recovery of defect bone by using Mg-doped HA/SA. Hydroxyapatite (HA) is the major constituent and essential component in bone and teeth. The stability of Mg doped HA/SA is influenced by starting precursor powders, preparation condition and method of preparing the samples for implant materials. The precipitation method was employed to prepare Mg-doped HA/SA powders by varying the composition of Mg at temperature 1300 C. The influence of Mg-doped HA/SA on phase composition, chemical structure and a functional group at various weight percentages (0.5wt%-1.5wt %) were accomplished through X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. Based on the XRD and FTIR analyses, there is the presence of different peaks intensity and adsorption bands which indicates the shifted of peaks due to the doping process and a chemical interaction were observed between the inorganic and organic phase. Furthermore, the transformation of β-TCP due to increase in sintering temperatures are caused by the presence of magnesium ions. The OH stretching bands of HA/SA are trace by FTIR that identified the decomposition of Mg-doped HA/SA.



Edited by:

Al Emran Ismail, Muhamad Zaini Yunos, Reazul Haq Abdul Haq and Said Ahmad




N. Kanasan et al., "FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Method", Key Engineering Materials, Vol. 791, pp. 45-49, 2018

Online since:

November 2018




* - Corresponding Author

[1] Liga Stipniecea, n, Kristine Salma-Ancanea, Natalija Borodajenkoa, Marina Sokolovab, Dmitrijs Jakovlevsb, L. B.-C. (2014). Characterization of ZnO Nanoparticles synthesized by wet chemical method, 6(3), 2159–2161.

DOI: https://doi.org/10.1016/j.ceramint.2013.09.110

[2] Cacciotti, I., Bianco, A., Lombardi, M., & Montanaro, L. (2009). Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. Journal of the European Ceramic Society, 29(14), 2969-2978.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.04.038

[3] Santos, M. H., Heneine, L. G. D., & Mansur, H. S. (2008). Synthesis and characterization of calcium phosphate/collagen biocomposites doped with Zn2+. Materials Science and Engineering C, 28(4), 563–571.

DOI: https://doi.org/10.1016/j.msec.2007.07.002

[4] Gozalian, A., Behnamghader, A., Daliri, M., & Moshkforoush, A. (2011). Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method. Scientia Iranica, 18(6), 1614–1622.

DOI: https://doi.org/10.1016/j.scient.2011.11.014

[5] Teng, Shuhua, Jingjing Shi, Bixian Peng, and Lijuan Chen. 2006. The Effect of Alginate Addition on the Structure and Morphology of Hydroxyapatite/gelatin Nanocomposites., Composites Science and Technology 66(11-12): 1532–38.

DOI: https://doi.org/10.1016/j.compscitech.2005.11.021

[6] Kim, T., Lee, H., Kim, D., Jin, H., Hwang, K., Kook, J.,Yoon, S. (2012). In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation. Materials Research Bulletin, 47(9), 2506–2512.

DOI: https://doi.org/10.1016/j.materresbull.2012.05.011

[7] Singh, J., Singh, H., & Batra, U. (2015). Magnesium Doped Hydroxyapatite: Synthesis, Characterization and Bioactivity Evaluation. Biomaterials Science: Processing, Properties, and Applications V, (254) 161-174.

DOI: https://doi.org/10.1002/9781119190134.ch15

[8] Stipniece, L., Salma-ancane, K., Borodajenko, N., & Sokolova, M. (2014). Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceramics International, 40(2), 3261–3267.

DOI: https://doi.org/10.1016/j.ceramint.2013.09.110

[9] Adzila, S., Azmil, K., Radde, R., Hassan, M. F., Arifin, A. M. T., Yunos, M. Z.,Haq, R. H. (2015). Effect of zinc doped calcium phosphate through mechanochemical synthesis. ARPN Journal of Engineering and Applied Sciences, 10(15), 6246–6249.

[10] Zhai, Y., Cui, F., & Wang, Y. (2005). Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Current Applied Physics, 5(5), 429-432.

DOI: https://doi.org/10.1016/j.cap.2005.01.004

[11] Adzila, S., Kanasan, N., Fahrul, M., Mubarak, A., Arifin, T., Nasrull, M., & Rahman, A. (2016). Synthesis and characterization of magnesium doped calcium phosphate for bone implant application, 11(14), July 2016, ISSN 1819-6608.

[12] Nanthini, K., Adzila, S., Suid, M. S. & Panerselvan, G. Preparation and Characterization of Hydroxyapatite/Sodium Alginate Biocomposites for Bone Implant Application. AIP Proceedings, Volume 1756, (2016), p.5162–5165.

DOI: https://doi.org/10.1063/1.4958749

[13] Kanasan, N., Adzila, S., Azimah mustaffa, N., & Gurubaran, P. (2017). The Effect of Sodium Alginate on the Properties of Hydroxyapatite. Procedia Engineering, 184, 442-448.

DOI: https://doi.org/10.1016/j.proeng.2017.04.115

[14] Kanasan, N., Adzila, S., Mustaffa, N. A., Nasrull, M., Rahman, A., Hassan, M. F., & Panerselvan, G. (2018). Effect of Sintering on Hydroxyapatite / Sodium Alginate Properties, 10, 78–82.

[15] Kanasan, N., Adzila, S., Mustaffa, N. A., & Sidi, S. M. (2017). The Effects of Sintering Temperature on Densification and Mechanical Properties of Hydroxyapatite / Sodium Alginate Biocomposites, 63, 1–8.

DOI: https://doi.org/10.1051/matecconf/201713500063

[16] Suchanek, Wojciech L. et al. 2004. Preparation of Magnesium-Substituted Hydroxyapatite Powders by the Mechanochemical-Hydrothermal Method., Biomaterials 25(19): 4647–57.

DOI: https://doi.org/10.1016/j.biomaterials.2003.12.008

[17] Parhi, P., Ramanan, A., & Ray, A. R. (2006). Preparation and characterization of alginate and hydroxyapatite-based biocomposite. Journal of Applied Polymer Science, 102(6), 5162–5165.

DOI: https://doi.org/10.1002/app.24706

[18] Ramesh, S., Natasha, A., Tan, C., Bang, L., Niakan, A., Purbolaksono, J.,Teng, W. (2015). Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods. Ceramics International, 41(9), 10434-10441.

DOI: https://doi.org/10.1016/j.ceramint.2015.04.105

[19] Monmaturapoj, N., & Yatongchai, C. (2010). Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods, 20(2), 53–61.

[20] Aryal, S., Matsunaga, K., & Ching, W. Y. (2015). Ab initio simulation of elastic and mechanical properties of Znand Mg-doped hydroxyapatite (HAP). Journal of the Mechanical Behavior of Biomedical Materials, 47, 135–146.

DOI: https://doi.org/10.1016/j.jmbbm.2015.03.018