Effect of LaNiO3 Buffer Layer on the Electrical and Optical Properties of Nonpolar ZnO Film Deposited on (100) Si Substrate


Article Preview

Nonpolar ZnO films are deposited on (100) Si substrate using LaNiO3 conducting buffer layer by radio frequency sputtering. X-ray diffraction results show that ZnO films are (110) and (002) orientation with and without LaNiO3 buffer layer. The current behavior of ZnO/LaNiO3 heterojunction exhibits ohmic conduction which is different from the diode-like rectification current behavior of ZnO film using insulated buffer layers. The photoluminescence properties indicate that the (110)-oriented nonpolar ZnO film has better band-edge emission than that of (002)-oriented polar ZnO film. It is suggested that LaNiO3 buffer layer can be used to deposit silicon-based ZnO film with well ohmic contact electrode in optoelectronic devices.



Edited by:

Henry Hu and Gu Xu




Q. L. Zhao et al., "Effect of LaNiO3 Buffer Layer on the Electrical and Optical Properties of Nonpolar ZnO Film Deposited on (100) Si Substrate", Key Engineering Materials, Vol. 793, pp. 29-34, 2019

Online since:

January 2019




* - Corresponding Author

[1] Y.N. Zhao, M.S. Cao, H.B. Jin, X.L. Shi, X.Li, and S. Agathopoulos: Combustion oxidization synthesis of unique cage-like nanotetrapod ZnO and its optical property. Journal of Nanoscience and Nanotechnology. 6(8), 2525(2006).

DOI: https://doi.org/10.1166/jnn.2006.528

[2] F.L. Schein, M Winter, T. Bontgen, H. von Wenckstern, and M. Grundmann: Highly rectifying p-ZnCo2O4/n-ZnO heterojunction diodes. Applied Physics Letters. 104, 022104 (2014).

DOI: https://doi.org/10.1063/1.4861648

[3] M.W. Allen, P. Miller, R.J. Reeves, and S.M. Durbin: Influence of spontaneous polarization on the electrical and optical properties of bulk, single crystal ZnO. Applied Physics Letters. 90, 062104(2007).

DOI: https://doi.org/10.1063/1.2450642

[4] T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma: Optical properties of excitons in ZnO-based quantum well heterostructures. Semiconductor Science and Technology. 20(4), S78(2005).

DOI: https://doi.org/10.1088/0268-1242/20/4/010

[5] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis: Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells. Physical Review B. 72(24), 241305(2005).

DOI: https://doi.org/10.1103/physrevb.72.241305

[6] G.F. Sun, K.H. Zhao, Y.L. Wu, Y.H. Wang, N. Liu, and L.W. Zhang: Polar dependent in-plane electric transport of epitaxial ZnO thin films on SrTiO3 substrates. Journal of Physics: Condensed Matter. 24(29), 295801(2012).

DOI: https://doi.org/10.1088/0953-8984/24/29/295801

[7] E. Cagin, J. Yang, W. Wang, J.D. Phillips, S.K. Hong, J.W. Lee, and J.Y. Lee: Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy. Applied Physics Letters. 92, 233505 (2008).

DOI: https://doi.org/10.1063/1.2940305

[8] J.S. Tian, M.H. Liang, Y.T. Ho, Y.A. Liu, and L. Chang: Growth of a-plane ZnO thin films on LaAlO3 (100) substrate by metal-organic chemical vapor deposition. Journal of Crystal Growth. 310(4), 777-782(2008).

DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.073

[9] G. Saraf, Y. Lu, and T. Siegrist: In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates. Applied Physics Letters. 93, 041903(2008).

DOI: https://doi.org/10.1063/1.2965801

[10] M.A. Myers, J.H. Lee, and H. Wang: Highly stable non-polar p-type Ag-doped ZnO thin films grown on r-cut sapphire. Materials Letters. 100(2), 78-81(2013).

DOI: https://doi.org/10.1016/j.matlet.2013.02.115

[11] Y.W. Zhang, X.M. Li, W.D. Yu, C. Yang, X. Cao, X.D. Gao, J.F. Kong, W.Z. Shen, J.L. Zhao, and X.W. Sun: Heteroepitaxial growth and luminescence properties of non-polar (110) orientation ZnO films on Si(001) substrates by pulsed laser deposition. Journal of Physics D: Applied Physics. 42(7), 075410(2009).

DOI: https://doi.org/10.1088/0022-3727/42/7/075410

[12] T. Wang, H. Wu, C. Chen, and C. Liu: Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers. Applied Physics Letters. 100, 011901 (2012).

DOI: https://doi.org/10.1063/1.3673346

[13] L. Qiao, and X.F. Bi: Effect of substrate temperature on the microstructure and transport properties of highly (100)-oriented LaNiO3-δ films by pure argon sputtering. Journal of Crystal Growth. 310(15), 3653-3658(2008).

DOI: https://doi.org/10.1016/j.jcrysgro.2008.05.013

[14] J.Q. He, S. Regnery, C.L. Jia, Y.L. Qin, F. Fitsilis, P. Ehrhart, R. Waser, K. Urban, and R.H. Wang: Interfacial and microstructural properties of SrTiO3 thin films grown on Si(001) substrates. Journal of Applied Physics. 92(12), 7200-7205(2002).

DOI: https://doi.org/10.1063/1.1522475

[15] C.H. Jia, X.W. Sun, G.Q. Li, Y.H. Chen, and W.F. Zhang: Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions. Applied Physics Letters. 104, 043501 (2014).

DOI: https://doi.org/10.1063/1.4863505

[16] T.H. Yang, Y.W. Harn, K.C. Chiu, C.L. Fan, and J.M. Wu: Promising electron field emitters composed of conducting perovskite LaNiO3 shells on ZnO nanorod arrays. Journal of Materials Chemistry. 22, 17071-17078(2012).

DOI: https://doi.org/10.1039/c2jm32483k

[17] J.J. Zhu, T. Aaltonen, V. Venkatachalapathy, A. Galeckas, and A. Yu. Kuznetsov: Structural and optical properties of polar and non-polar ZnO films grown by MOVPE. Journal of Crystal Growth. 310(23), 5020-5024(2008).

DOI: https://doi.org/10.1016/j.jcrysgro.2008.07.117