[1]
A. Golev, M. Scott, P.D. Erskine, S.H. Ali, G.R. Ballantyne, Rare earths supply chains: current status, constraints and opportunities, Resour. Policy. 41 (2014) 52–59.
DOI: 10.1016/j.resourpol.2014.03.004
Google Scholar
[2]
V.V. Seredin, S. Dai, coal deposits as potential alternative sources for lanthanides and yttrium, Int. J. Coal Geol. 94 (2012) 67–93.
DOI: 10.1016/j.coal.2011.11.001
Google Scholar
[3]
R.K. Taggart, J.C. Hower, G.S. Dwyer, H. Hsu-Kim, Trends in the Rare Earth Element Content of U.S. Based Coal Combustion Fly Ashes, Environ. Sci. Technol. 50 (2016) 5919–5926, (2016).
DOI: 10.1021/acs.est.6b00085
Google Scholar
[4]
F. Anggara, D.A.Y. Besari, W. Rosita, H.T.B.M. Petrus, The composition and mode of occurrence of rare earth elements and yttrium in fly and bottom ash from coal-fired power plants in Java, Indonesia Anggara, in 35th Annual Meeting of The Society for Organic Petrology (Program and abstract) 35 (2018) 25.
DOI: 10.1007/s40789-022-00476-2
Google Scholar
[5]
R. Lin, M. Stuckman, B.H. Howard, T.L. Bank, E.A. Roth, M.K. Macala, C. Lopano, Y. Soong, E.J. Granite, Application of sequential extraction and hydrothermal treatment for characterization and enrichment of rare earth elements from coal fly ash, Fuel 232 (2018) 124–133.
DOI: 10.1016/j.fuel.2018.05.141
Google Scholar
[6]
M.E. Aphane, E.M. Van Der Merwe, F.J. Doucet, L. Petrik, The effect of sulphuric acid concentration on the removal of reactive aluminium from south african coal fly ash, in World of Coal Ash Conference, (2015).
DOI: 10.1007/s12649-019-00726-6
Google Scholar
[7]
J.F. King, R.K. Taggart, R.C. Smith, J.C. Hower, H. Hsu-Kim, Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash, Int. J. Coal Geol. 195, (2018) 75–83.
DOI: 10.1016/j.coal.2018.05.009
Google Scholar
[8]
Z. Wang, S. Dai, J. Zou, D. French, I. T. Graham, Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: concentration, characterization and optimized extraction, Int. J. Coal Geol. 203 (2019) 1–14.
DOI: 10.1016/j.coal.2019.01.001
Google Scholar
[9]
J.W. Ahn, T. Thriveni, Y. Jegal, Occurrence and distribution of rare earths with different coal power plants ash and recovery of critical rare earths from coal ash for simultaneous utilization of CO2, in World of Coal Ash Conference, (2015).
DOI: 10.1007/978-3-319-48768-7_18
Google Scholar
[10]
F. Anggara, D.H. Amijaya, A. Harijoko, T.N. Tambaria, A.A. Sahri, Z.A.N. Asa, Rare earth element and yttrium content of coal in the banko coalfield, South Sumatra Basin, Indonesia: contributions from tonstein layers, Int. J. Coal Geol. 196 (2108) 159–172.
DOI: 10.1016/j.coal.2018.07.006
Google Scholar
[11]
Presidential Decree Article Number 22, Rencana Umum Energi Nasional. (2017).
Google Scholar
[12]
J.C. Hower, J.G. Groppo, P. Joshi, S. Dai, D.P. Moecher, M.N. Johnston, Location of cerium in coal-combustion fly ashes : implications for recovery of lanthanides, Coal Combust. Gasif. Prod. 5 (2013) 73–78.
DOI: 10.4177/ccgp-d13-00007.1
Google Scholar
[13]
X.Querol, N. Moreno, J.C. Umaa, A. Alastuey, E. Hernandez, A. Lopez-Soler, F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol. 50 (2002) 413–423.
DOI: 10.1016/s0166-5162(02)00124-6
Google Scholar
[14]
R. Wang, Y. Zhai, Z. Ning, and P. Ma, Kinetics of SiO2 Leaching from Al2O3 Extracted slag of fly ash with sodium hydroxide solution, Trans. Nonferrous Met. Soc. China 24 (2014) 1928–(1936).
DOI: 10.1016/s1003-6326(14)63273-8
Google Scholar