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Abstract. There is a large body of literature on both the techniques for bulge testing and experimental 
results for various metallic materials (see the book of Banabic [1]). Generally, the experimental data 
for isotropic materials are interpreted using the von Mises yield criterion [2]. In this paper, we 
investigate the role played by the third invariant of the stress deviator, 3,J on the response under 
bulging of isotropic materials that have the same mechanical response in tension and compression. 
To this end, we use the yield criterion developed by Cazacu [3] and our implementation of this model 
in the F.E. code Abaqus [4]. For isotropic materials, this yield criterion involves a unique parameter, 
denoted α ; in the case when 0,α = it reduces to the von Mises yield criterion while for 0,α ≠ it 
involves dependence on 3J . The results of F.E. simulations of bulge tests for isotropic materials 
characterized by various values of the parameterα put into evidence new aspects concerning the stress 
states experienced by the respective materials under bulging.  

1. Introduction 
The bulge test is a simple test that allows for the assessment of the formability of metallic sheets. 
Generally, the experimental data reduction and F.E. analysis of bulging of isotropic materials is done 
assuming that the plastic behavior can be modeled with the von Mises yield criterion; for the classical 
analytical solution for the stresses and strains at the pole of a hemispherical bulge, see Young et al 
[5]. However, the assumption of plastic behavior governed by the von Mises yield criterion may lead 
to an overestimation of how much a specimen can bulge before it fails. In the case of isotropic 
materials that display tension-compression asymmetry and dependence on 3J  on yielding, Cazacu 
and Revil-Baudard [6] derived a new solution to the problem and a correction to the classical relation 
([5]) that is generally used to extract the equivalent stress vs. equivalent strain curve from bulge data. 
In this paper, we provide analysis of the bulge test using the isotropic form of the Cazacu [3] yield 
criterion. While this criterion predicts the same yielding response in tension and compression, it can 
also capture a dependence of the yielding on 3J . Specifically, for isotropic materials, this yield 
criterion involves a unique parameter, denoted α , that can be determined based on the ratio between 
the yield stress in simple tension and that in shear. Only in the case when 0,α = it reduces to the von 
Mises yield criterion while for 0,α ≠ there is dependence of yielding on 3J . For the purpose of 
simulating the bulging response, the elastic/plastic model using the Cazacu [3] yield criterion was 
implemented into the FE implicit solver Abaqus Standard (see Abaqus [4]) by developing a user 
material routine (UMAT). Simulations of bulging tests were performed for isotropic materials 
characterized by various values of the parameter .α  The paper is organized as follows. In section 2, 
we present the constitutive model, the results of the FE simulations of bulge tests for various materials 
are given in section 3. A summary and concluding remarks are presented in section 4. 
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2. Constitutive Modeling 
The common sign convention used in metal plasticity  i.e., tensile stresses and strains are positive  

is employed. The total strain rate is the sum of an elastic part and a plastic part .pD  To describe the 
linear elastic response, the isotropic Hooke’s law is used: 

: ( )e p= −σ C D D                                                                                                                          (1) 

where σ  is the Green-Naghdi rate of the Cauchy stress tensor ,σ eC is the elastic fourth-order tensor; 
the symbol “:” denotes the contracted product between the two tensors. Note that a superposed dot 
denotes differentiation with respect to time. With the assumption of linear isotropic elasticity, the 
elastic tensor eC takes the following form in any coordinate system:  
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with , , , 1...3,i j k l = ijδ  being the Kronecker delta tensor, E the Young’s modulus, and ν  the Poisson’s 
ratio. For metallic materials, the associated flow rule is: 
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where λ  is the plastic multiplier, and F is the yield function. It is assumed that hardening is isotropic 
and governed by the equivalent plastic strain, denoted pε , then F takes the following form: 

( , ) ( ) ( ) ( )p p pF Y Yε ϕ ε σ ε= − = −σ σ                                                                                          (4) 

where ϕ  is the yield criterion, ( )pY ε  is the hardening law and σ  denotes the effective stress 
associated to the yield criterion and pε  is the work-conjugate of σ . 
As previously mentioned, in order to account for the influence of 3J  on yielding of isotropic materials 
and consequently on their plastic behavior under bulging, we use the isotropic form of Cazacu [3] 
yield criterion for which the effective stress is given by: 

1
4 2 8

2 2 3( ) ( )B J J Jσ α = −               (5) 

The parameter α  can be expressed in terms of the yield stress in uniaxial tension, Tσ  and the yield 
stress in shear, Yτ  , as: 
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In Eq. (5), B is a constant defined such that for uniaxial tension, the effective stress σ  is equal Tσ , 
i.e.  
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For the yield surface to be convex, the parameter α  should belong to the range: 27 / 5 3.α− ≤ ≤  
As an example, Fig. 1 shows the projections in the biaxial plane ( , )xx yyσ σ of the theoretical yield loci 
according to the Cazacu [3] yield criterion corresponding to 0,α = (Von Mises), α  = -5, and 3α = , 
respectively. A Swift law is used to model hardening, i.e.,: 
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( )0 0( )
np pY Kε ε ε= +    (8) 

where 0 ,K 0 ,ε and n are material parameters. For example for the aluminum alloy AA 6016-T4,

0 498.8MPa,K = 0 0.0089,ε = and 0.285n =  while the elastic properties are: E = 69 GPa and 0.3ν =  
(see benchmark data and information on this material reported in [7]). 

 
Fig. 1. Projections in the ( , )xx yyσ σ plane of the yield loci corresponding to 0α =  (von Mises), 

5,α = − and 3α = according to Cazacu [3]. Stresses are normalized by the yield stress in uniaxial 
tension, T.σ  

3. FE Results of Bulge Tests  
Numerical simulations of the bulge test were done with our in-house UMAT developed for the 

constitutive model given by Eq. (1)-(8). The circular blank considered has a radius of 100 mm and is 
1 mm thick. It was meshed using Abaqus C3D8R solid elements (3D eight node linear brick elements 
with reduced integration), with three elements along the thickness direction. Due to the symmetry of 
the circular blank, only one-quarter of the specimen needs to be modeled; a total of 4557 FE elements 
were used. The die has a circular aperture, with an opening diameter of 140 mm and a fillet radius of 
10 mm. It was meshed with Abaqus R3D4 rigid elements. Irrespective of the material, the bulging 
pressure was applied linearly with time.  

Fig. 2 presents the evolution of the height of the pole with increasing pressure for materials 
characterized by 0α = (von Mises), α  = -5, and 3α = , respectively. 
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Fig. 2. Hydraulic pressure versus the pole height  obtained with Cazacu [3] yield criterion for isotropic 
materials characterized by α  = -5 ( blue curve) α = 3 (yellow curve) respectively, and for a von 
Mises material (gray curve).The die aspect ratio is / 1a b = (hemispherical bulging). 

Note that irrespective of the material, it takes about the same amount of pressure to achieve a certain 
apex height. This is to be expected given that the blank is circular and all three materials are isotropic, 
so they should have the same yield stress under equibiaxial loading.  
Let us recall that in sheet metal forming applications where the material experiences stretching, the 
thickness at any region of the part is not allowed to be less than a specified threshold value, otherwise 
the part is not considered to be “safe.” For this reason, it is crucial to accurately predict the reduction 
in thickness. Fig. 3 shows the thickness at the pole vs. height of the apex for the three isotropic 
materials. Note that the thickness at the pole depends on the parameter α that models the influence 
of 3J on the plastic behavior. It is worth noting that for the same height of the bulge, the thickness at 
the pole is greater for the material characterized by 0α >  than that of a von Mises material ( 0α = ); 
on the other hand, for a material with 0,α < the thickness is lower. Furthermore, for a certain 
thickness, the greater is the value of ,α the higher is the bulge height meaning that to attain the same 
thickness the material has to bulge more. This suggests that for a material characterized by a negative 
value of α value, neglecting its dependence on 3J  and simply modeling its behavior with the von 
Mises criterion will lead to an overestimation of the thickness of the bulge,and consequently, the 
thinning of the material will be underestimated.  
It is worth to further examine the isocontours of the equivalent plastic strain in the three bulges at the 
same pressure. Note that the level of equivalent plastic strain attained for the same pressure depends 
on the parameter α that models the influence of 3J on the plastic behavior. The results shown in Fig. 
4 indicate that for the material characterized by 0α > the maximum equivalent plastic strain in the 
specimen is lower than in a bulge obtained with a von Mises material (compare Fig 4(a) to Fig.4(c)) 
whereas for the material characterized by an α <0 the maximum equivalent plastic strain is higher 
(compare Fig 4(a) to Fig.4(b)). Those results are consistent with the trends shown in Fig.3.  
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Fig. 3. Influence of 3J  on the thickness at the pole vs the apex height obtained with the isotropic form 
of Cazacu [3] yield criterion; die aspect ratio of / 1a b = (hemispherical bulging). Note that 0α =
corresponds to von Mises yielding behavior. 

  
(a) 

    
(b) (c) 

Fig. 4. Predicted isocontours of the equivalent plastic strain according to the isotropic form of Cazacu 
yield criterion [3] for about 4.73 MPa pressure for materials characterized by different values of the 
parameter α :  (a) 0α = (von Mises) (b) 5,α = − and (c) 3α = , respectively. 
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4. Conclusions 
It is generally assumed that for isotropic materials, the effect of the third invariant on yielding does 
not affect the response during forming, so the von Mises  yield criterion is used for data reduction 
and analysis of simple forming tests such as bulging under pressure. FE simulations using a yield 
criterion that enables to differentiate between isotropic materials on the basis of the influence of their 
yielding behavior on 3J , have shown that there is a correlation between the value of the parameter 
α  that models that dependence on 3J  and the plastic strains that develop in the bulge and respectively 
the thinning behavior.  
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