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Abstract. Liquid composite molding (LCM) is a widely used group of various different processing 
techniques allowing to produce small, medium or even very big sized components from prototype 
level up to series production. During the infiltration it is necessary to run the process in a way 
preventing void formation. The typically used textile reinforcing structure results in a dual-scale 
impregnation consisting of micro impregnation within the constituent yarns of the textile structure 
and a macro impregnation between the yarns. Capillary rise experiments on flat textile samples are 
used and the well-known Lucas-Washburn equation has been extended to cover the special 
configuration. A porous capillary wall is assumed to better represent the three-dimensional nature of 
capillary networks within reinforcing textiles. An according test rig is presented. Accurate 
experimental results are gained and capillary radii are computed simple and fast via curve regression. 

Introduction 
Liquid composite molding (LCM) is a widely used group of various different processing 

techniques allowing to produce small, medium or even very big sized components from prototype 
level up to series production. LCM is characterized by preparing the dry reinforcing structure in the 
final component shape first and infiltrating this so called preform afterwards with the liquid thermoset 
resin. After infiltration the composite material is cured and, depending on the process setup, net-
shaped components are reached.  

The infiltration stage requires a special attention. It is necessary to run the process in a way 
resulting in a complete wetting of the reinforcing structure and preventing any void formation. 
Especially if higher loaded, structural components are aimed, the very small sized individual 
filaments (typical diameter range: 7-25 µm) are typically used in the form of yarns (consisting of 
several thousands of filaments). Within the yarns an arrangement of a dense package of, at least 
locally, parallel aligned filaments are given. Depending on the filament type, i.e. glass, carbon, bio-
based, etc., the intra-yarn interstices tend to be quite constant, e.g. glass filament yarns, show more 
pronounced variation, e.g. carbon filament yarns, or vary significantly, e.g. natural fibers (typically 
natural fiber yarns are twisted to gain a stable arrangement of the discontinuous fibers). As a result 
of slow and unequal capillary penetration of resin into spaces between the filaments, wetting of yarns 
typically results in microvoids trapped in the resin between the individual filaments [1]. Capillary 
impregnation of aligned fibrous beds exhibits a high degree of anisotropy depending on whether the 
fluid flow is parallel or perpendicular [2]. During LCM-processing a low bulk flow front velocity will 
result in pronounced capillary flow within the yarn. In such a case the capillary flow front may lead 
the bulk flow front. Increasing the bulk flow front velocity will change the saturation mode. The flow 
front surrounding the yarn will lead and transverse flow into the yarn will support the saturation of 
the yarn [2]. Accordingly, the typically used yarn-based textile reinforcing structure results in a dual-
scale impregnation consisting of micro impregnation within the constituent yarns of the textile 
structure and a macro impregnation between the yarns [3-5]. Due to challenging flow conditions 
significant risk of void formation is given [6]. Whether inter-yarn or intra-yarn void formation is 
dominant, depends mainly on the average flow front velocity during saturation. Accordingly, void 
formation can be minimized by infiltration with an optimized flow front velocity resulting in 
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comparable timely saturation development in the yarns and in between [7]. For complex shaped 
geometries such approach will not work since a controlled and defined flow front velocity in all 
regions is hardly reachable. A more detailed understanding about the mechanisms during saturation 
is necessary. Especially textile reinforcing structures have to be characterized since such structures 
are mainly used in LCM processes. 

In the present paper the capillary driven saturation of textile reinforcing structures is investigated 
by using a custom-made test rig. Furthermore, an improved modeling based on an extension of the 
Lucas-Washburn equation is proposed. 

Experimental Procedure 
For the capillary rise experiments a custom-made test rig [8, 9], continuously developed to fulfill 

all requirements to ensure reliable measurements is used. Details about test setup, test fluid selection, 
weight and flow front detection are described in [9]. The advantage of the given setup is the use of a 
flat areal cavity in which the textile structure is placed. The cavity is made of covering 30 mm thick 
glass blocks and changeable cavity distance frames. This way homogenous sample thickness is 
ensured and screwed clamping frames allow to apply required compression even if high fiber volume 
fraction is aimed during the testing. 

 

 

 
Figure 1: Experimental setup of the capillary rise experiment (top) and a representative data set 
gained. 
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Capillary flow modeling and data analysis  
Lucas [10] and Washburn [11] investigated the dynamics of capillary flow and proposed the well-

established Lucas-Washburn equation (Eq. 1): 
 

 h2(t) = γ𝑙𝑙 cos(θ) 𝑟𝑟𝑐𝑐
2 η

 𝑡𝑡 (1) 

With h: Fluid height  
t: Time  
γ𝑙𝑙: Surface energy of the liquid  
θ: Contact angle  
𝑟𝑟𝑐𝑐: Capillary radius  
η: Dynamic viscosity 

 
This L-W-equation is based on following assumptions: 

• The porous structure consists of constant shaped cylindrical tubes 
• An incompressible Newtonian fluid is used 
• The fluid exhibits a laminar and viscous flow 
• A one-dimensional flow is modeled 
• Gravitational effects are neglected 

Gravitational effects can be considered by determining the equilibrium reached when hydrostatic 
pressure and Laplace pressure become equal. According to Jurin’s law [12] this end height is (Eq. 2): 

 ℎ𝑗𝑗𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗 =  2 γ cos(θ)
𝑟𝑟𝑐𝑐 ρ g

 (2) 

With ρ: Fluid density  
g: gravitational acceleration  
 

For small capillary radii the effect is less pronounced and one might neglect the gravitational 
effect. 

From the literature [9, 13-15] it is well known, a difference between experimental results and a fit 
using Eq. 1 is often found. Consideration of gravity typically improves the quality of the fit. A further 
improvement is aimed by implementing a ‘porous capillary wall model’ proposed by Blößl [9] (Fig. 
2), in which a flow through the walls of the capillary tube, as described by Deen [16], is covered. This 
way, an extended Lucas-Washburn equation is gained (Eq. 3) 

 𝑣𝑣𝑧𝑧 =   𝑟𝑟𝑐𝑐
4 ℎ

 γ𝑙𝑙 cos(θ) 
η

−  𝑟𝑟𝑐𝑐
2

8 η
 ρ g −  𝑣𝑣𝑤𝑤 ℎ

𝑟𝑟𝑐𝑐
  (3) 

With 𝑣𝑣𝑧𝑧: Velocity in z-direction of the fluid inside the capillary  
𝑣𝑣𝑤𝑤: Velocity through the porous wall 

 
To determine the parameters for the model, experiments have to be performed. Parallel weight and 

optical recording allow to double-check the results. As depicted in Fig. 1, the flow front is detected 
by digital image processing. Difference images of the greyscale values provide the flow front position 
for every time instance. The quality of this processing step can be improved with various filters and 
consequently be adapted to many materials. Since the detected flow front points show significant 
scatter, a method is necessary to reliably describe the flow front line. The empirical cumulative 
density function (ECDF) with a cumulative distribution limit of 95 % was found to be the most 
suitable [9]. The influence of edge effects as well as a faster flow in hidden layers can be minimized. 
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The porous capillary wall model can then be generated from the ECDF-flow front data. First, a 
power law fit is executed to compensate for missing data points and to gain a smooth curve for the 
flow front.  

 

Figure 2: Porous capillary wall model. 
 
Determination of the capillary radius is the next, most critical, step. It can be calculated from the 

LW equation after determining the slope of the squared height over time progression. Since the slope 
in a given area needs to be linear and all relevant equations rely on the capillary radius, the selection 
of a proper value for this area is critical for further calculations. In a series of experiments, the 
capillary radius depending on porosity (φ) or fiber volume content (FVC) is described by an 
exponential function. 
The parameters fluid viscosity, fluid density, and surface energy are generated separately or taken 
from literature. Temperature influence on these parameters is considered during the experiments. 
With all these values, both the LW model and the porous capillary wall model can be described.  

The peripheral fluid velocity is determined rearranging Eq. 3 and then applying an exponential 
fitting function to this data. The model parameters for this function can then be fitted again 
considering different porosity levels.   

Model Validation  
In the following section, capillary rise experiments performed with different materials are 

presented and compared with both modeling approaches. A twill 2/2 weave was chosen as reinforcing 
structure for all materials since it is often used in the processing of composites. Due to its structure, 
it is also well suited to test the model predictions when peripheral fluid flow is involved. The most 
common fiber materials carbon, glass, and natural (here: flax) were used. Further information on the 
materials is given in Table 1. 

Table 1: Material used in the validation experiments. 
 

Material Structure Supplier Name FAW 
[g/m²] 

Carbon Twill 2/2 C. Cramer, Weberei,  
GmbH u. Co. KG 

Style 423-1 400 

Glass Twill 2/2 Hexcel Corporation HexForce01202 290 
Flax Twill 2/2 Composites Evolution Ltd. Biotex 200 200 

For all materials, five to seven experiments were performed to ensure statistical reliability and to 
compensate for possible damaged data sets. As test fluid, Decane was chosen analogous to [9].  
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After the evaluation of the flow front progression, both the Lucas-Washburn and the porous 
capillary wall model were applied. 

Fig. 3 shows the results of the carbon fiber weave. The blue and the red line depict the mean of 
the measurement values for nine and eight layers respectively. The small dotted lines show the 
standard deviation. It can be seen that the fitting curves of the porous capillary wall model approach 
lie almost exactly on those lines. This demonstrates, the model prediction is accurate but can still be 
improved slightly. When using (exponential) fitting models’, small deviations in the measured or 
calculated parameters can lead to some inaccuracy of the results. 

Compared to that, the Lucas Washburn fit displayed in orange is only remotely accurate in the 
initial phase of the measurement. Then its slope completely overestimates the flow front velocity. 
This shows how the consideration of peripheral flow and gravity can greatly improve the model. The 
used parameters for the porous capillary wall model are given in the figure. 

 
Figure 3: Validation of the porous capillary wall model on carbon twill 2/2 weave. Nine (blue) and 
eight (green) layers and their respective standard deviation (dotted) compared to the Lucas-Washburn 
(LW, orange) and the porous tube model fit (black). 

 
In further experiments, nine layers of glass and flax fiber twill weaves were used. Analogous to 

the previous material, the modelling approaches should be validated. In Fig. 4, it can be seen that for 
both materials the porous capillary wall approach is close to the actual flow front progression. It 
slightly underestimates the flow velocity. As mentioned before, this can be attributed to small 
deviations in the calculation of the modelling parameters. 

Again, the Lucas Washburn model shows good accuracy in the initial phase of the capillary rise 
but then overestimates it. As before, it can be stated that the LW model lacks precision when 
describing reinforcing materials where the capillary flow is not only directed strictly in vertical 
direction. 
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Figure 4: Validation of the porous capillary wall model on glass and natural (flax) twill 2/2 weaves. 
Nine layers of glass (blue) and natural fibers (green) and their respective standard deviation (dotted) 
compared to the Lucas-Washburn (LW, orange) and the porous capillary wall model fit (black). 

Conclusion  
The porous capillary wall model approach was introduced to consider more complex capillary 

flow effects in typically used composite reinforcing textile materials. As an extension of the well-
known Lucas Washburn equation, it is capable to describe peripheral fluid flow. The model is 
validated by the analysis of capillary rise experiments of three different reinforcing materials. It could 
be proven that the consideration of peripheral flow and gravity has significant effect on the quality of 
the model. In consequence, regarding common composite reinforcing materials, this model should be 
preferred to describe the capillary flow in LCM processes. 
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