
 

Investigation on Homogeneous Modeling of Gyroid Lattice Structures: 
Numerical Study in Static and Dynamic Conditions  

Edoardo Mancini1,a*, Mattia Utzeri2,b  and Marco Sasso2,c  
1Università degli Studi dell’Aquila, DIIIE, Piazzale Ernesto Pontieri I, Monteluco di Roio, 67100 

L’Aquila, Italy 
2Università Politecnica delle Marche, DIISM, Via Brecce Bianche, 60121 Ancona, Italy 

aedoardo.mancini@univaq.it; bm.utzery@pm.univpm.it; cm.sasso@staff.univpm.it; 

Keywords: Additive Manufacturing, homogeneous material, lattice structure, Gyroid 

Abstract. The TPMS (triply periodic minimal surface) are receiving great attention for production of 
open cell scaffold structures, for example in biomedical applications. In this paper stretch-dominated 
lattice structures have been considered. The Gyroid cell made of epoxy resin by DLP technology was 
analyzed. The compression test results in quasi-static (10-3 s-1) and dynamic (4x102 s-1) conditions 
have been used to compute the macroscopic cellular material properties by the homogenization 
methods. Finally, in order to evaluate the behaviour of the unit cell under multi-axial stress state, 
combined shear-compression tests have been carried out as well. 

Introduction 
The gyroid, one of triply periodic minimal surface (TPMS), belongs to the cubic crystal system, 

which was described in [1] and designed for lightweight high-strength new materials. Gyroid 
structures can be sheet-based and strut-based [2]. In this work, sheet-based gyroid cellular structures 
are designed and manufactured by Digital Light Processing (DLP). 

The mechanical response of lattice scaffold structures can be numerically evaluated either studying 
the unit cell [3][4] or implementing a homogeneous material model able to reproduce the lattice 
mechanical behaviour. As a matter of fact, the structural behaviour of components built of lattice unit 
cells and, in general, of cellular materials is very hard to be analysed numerically, due to the necessity 
to reproduce the real structure. The adoption of mesoscopic modelling usually determines a 
computational cost not negligible [5][6], so, the capability to use a homogeneous material model able 
to reproduce lattice behaviour may overcome this limitation. Homogenization method can be used to 
compute the macroscopic cellular material properties so to replace mesoscopic ones. Moreover, the 
anisotropy of the structures must be evaluated when cellular materials are used.  

In this paper the numerical homogenization following the periodical RVE proposed by Xia et al 
[7] and Kadri et al [8], was used. The unit cell C8 (8x8x8 mm) was taken as representative volume 
element (RVE) and then modelled to calculate the elastic tensor for the homogeneous formulation. 
The same cell was adopted for the mesoscopic numerical models. 

After the numerical mesoscale model validation, different simulations have been carried out to 
access the gyroid cell behaviour at a different loading direction. The simulated compression tests of 
the structures, oriented in a different direction, to reproduce combined shear-compression, have been 
prepared and analysed.  

Material and method 
Material. All specimens and scaffolds were printed through a commercial DLP 3D printer Anycubic 
Photon S (Fig. 1). The material is a commercially available high-quality resin product (Value, Prima 
Creator) [3]. 
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(a) (b) (c) 
Fig. 1 3D printing: (a) Anycubic 3D printer, (b) Printed specimens (Reproduced from [3], Fig. 1) and (c) scaffolds for 

combined shear-compression 

The features of the cells and scaffolds are reported in Table 1. The cellular structures were of 
TPMS Gyroid type, with different sizing but similar density. The Gyroid structures were designed 
into NtopologyTM software. Then, the STL format files of all structures were exported to the FE model 
software Hypermesh. 

 
Table 1 Gyroid samples 

 Dimension 
[mm] 

Cell Thicknesses 
[mm] 

Designation 

Unit cell 8 8x8x8 8 1 C8 
Scaffold unit cells 8 16x16x16 8 1 S16C8 

 
The unit cell and the scaffolds, the latter for combined shear-compression tests, has been printed 

with the same parameters as in [3] (cf. Table 1). 
 

Equipment. Quasi-static compression and combined shear-compression tests were performed by a 
universal tensile machine equipped with a 50kN load cell (Zwick/Roell® Z050, Fig. 3a). Dynamic 
compression test have been carried out by a direct split Hopkinson bar (Fig. 3b) available at the lab 
of Polytechnic University of Marche [9][10]. 

 

 

 
(a) (b) 

Fig. 2 Equipment (a) Tensile machine, (b) Hopkinson bar (Reproduced from [3], Fig. 3) 

Finite Element Model. 3D mesoscale and macroscale FE model have been carried out to calculate 
the stiffness matrix by homogenization procedure, to assess the effects of combined loads and to 
verified the homogenization procedure itself. The material law has been modeled as piecewise linear 
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obtained experimentally by the authors in [3] for mesoscopic models, whereas the linear elastic-
anisotropic material was used for macroscale simulation.  
The Bi-linear law, expressed by equation (1), was chosen. The material model coefficients have been 
parametrized as a function of the relative density (𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜌𝜌𝑟𝑟𝑒𝑒𝑒𝑒 𝜌𝜌𝑏𝑏𝑏𝑏𝑟𝑟𝑏𝑏⁄ ; 𝜌𝜌𝑟𝑟𝑒𝑒𝑒𝑒 is the gyroid density and 
𝜌𝜌𝑏𝑏𝑏𝑏𝑟𝑟𝑏𝑏 is the density of base material). 
 
𝜎𝜎 = 𝐸𝐸(𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)𝜀𝜀  𝜎𝜎 ≤ 𝜎𝜎𝑦𝑦 
𝜎𝜎 = 𝜎𝜎𝑦𝑦(𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟) + 𝐸𝐸𝑇𝑇(𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)�𝜀𝜀 − 𝜀𝜀𝑦𝑦�  𝜎𝜎 ≥ 𝜎𝜎𝑦𝑦  

(1) 

 
where σ and ε are engineering stress and strain considered positive in compression and E, ET, 𝜀𝜀𝑦𝑦 and 
𝜎𝜎𝑦𝑦 are the Young Modulus, Tangent Modulus, Strain at Yield and Yield Strength, respectively. 
Tetrahedral elements with a mean size of 0.3 mm have been used. All FE models are reported in Fig. 
3. The model in Fig. 3b was used to confirm the utility of mesoscale modelling, despite, leaving the 
computational cost very high. Instead, the model in Fig. 3c has been necessary to limit the scaffold 
supports effect. 

 

 
[𝜀𝜀11, 0,0,0,0,0]𝑇𝑇 

 
(a) (b) 

 
 

(c) (d) 
Fig. 3 FE model: (a) unit cell 8 for homogeneous - formulation, (b) mesoscopic model for numerical verification, (c) 

mesoscopic and (d) macroscopic models for combine shear-compression tests comparison 

To calculate the elastic tensor Cij (stiffness matrix) for the homogeneous formulation the simple 
procedure described in [7] and [8] was taken. The unit cell C8 as representative volume element 
(RVE) was chosen and modelled. The unified periodic boundary condition reported in equation Eq.(2) 
was adopted. 
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∆𝑙𝑙+𝑥𝑥,𝑦𝑦,𝑧𝑧�℩̂, 𝚥𝚥̂,𝜘𝜘� −  ∆𝑙𝑙−𝑥𝑥,𝑦𝑦,𝑧𝑧�℩̂, 𝚥𝚥̂,𝜘𝜘� = 𝐷𝐷[℩̂,𝚥̂𝚥,𝜘𝜘�]
(𝑥𝑥,𝑦𝑦,𝑧𝑧)  (2) 

 
where ℩̂, 𝚥𝚥̂ and 𝜘𝜘� are the cosines directors of axes x, y and z, ∆𝑙𝑙+𝑥𝑥,𝑦𝑦,𝑧𝑧|℩̂, 𝚥𝚥̂,𝜘𝜘� is the displacement of 

nodes on the RVE surfaces whose normal are ℩̂, 𝚥𝚥̂ and 𝜘𝜘�, ∆𝑙𝑙−𝑥𝑥,𝑦𝑦,𝑧𝑧|℩̂, 𝚥𝚥̂,𝜘𝜘� is the displacement of nodes 
on opposite face of the RVE (Fig. 4). The constants, 𝐷𝐷[℩̂,𝚥̂𝚥,𝜘𝜘�]

(𝑥𝑥,𝑦𝑦,𝑧𝑧) represent both the average stretch or 
contraction of the RVE model due to the action of the three normal traction components and the shear 
deformations due to the three shear traction components. 

 
Fig. 4 Displacement notations 

The effective elasticity tensor Cij was calculated by solving the material constitutive relation Eq.(3) 
by applying strain loadings on the mesoscopic unit cell model: 

𝜎𝜎𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖   (i, j = 1 to 6) (3) 

where 𝜎𝜎𝑖𝑖 and 𝜀𝜀𝑖𝑖 are the stress and strain of the RVE model. To solve Eq. ( 3 ), the following six 
loadings were applied individually in the RVE models (e.g. 𝜀𝜀11 is shown in Fig. 3a). 

 
𝜀𝜀11 = [0.02,0,0,0,0,0]𝑇𝑇 𝜀𝜀22 = [0,0.02,0,0,0,0]𝑇𝑇 𝜀𝜀33 = [0,0,0.02,0,0,0]𝑇𝑇 
𝜀𝜀12 = [0,0,0,0.02,0,0]𝑇𝑇  𝜀𝜀23 = [0,0,0,0,0.02,0]𝑇𝑇 𝜀𝜀31 = [0,0,0,0,0,0.02]𝑇𝑇 

 
𝜎𝜎𝑖𝑖 are calculated using the total reaction force divided by the cross-sectional area of the cell (Fig. 5). 

 
Fig. 5 Reaction forces 

Results and Discussion 
Quasi-Static and Dynamic behaviour. For what concern the behaviour of the base material in bulk 
form we used the results, showed in Fig. 6, obtained in a previous work [3]. 
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Fig. 6 True. Stress-Strain curves of the base material (Reproduced from [3], Fig. 8; where Dyn @450/s and E Dyn 

means the reached strain rate and the Young modulus in dynamic conditions, instead QS @0.001 /s and E QS refer to 
quasi-static conditions) 

 
The scaffold was tested only in quasi-static conditions and to verify the accuracy of the numerical 

simulation (Fig. 7a). The combined shear-compression test was simulated by placing the scaffolds 
between the two supports, loaded by two rigid planes (Fig. 3b). A frictional contact with 𝜇𝜇𝑠𝑠 = 0.08 
was imposed between the rigid planes and the supports. 

The combined shear-compression results both experimental and numerical are reported in term of 
load-displacement curves in Fig. 7b. The latter points out the good response of the numerical model. 

 

 
 

(a) (b) 
Fig. 7 (a) Numerical simulation result (Von Mises stress distribution), (b) Load-displacement curves comparison 

Numerical homogenization on unit cell C8. Mesoscopic numerical models have been prepared on 
unit cell 8 and 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 ⁓0.365 in order to identify the elastic matrix coefficients (Cij). The results 
confirmed 7 independent constants with C14, C15, C16, and C45 close to zero (Fig. 8 and Fig. 9). 
Moreover, the Zener factor (𝑍𝑍 = 2𝐶𝐶44 (𝐶𝐶11 − 𝐶𝐶12)⁄ , [11]) was evaluated to identify the anisotropic 
behaviour. Under quasi-static conditions, the Zener factor was found to be 1.037, which is sufficiently 
close to unity to consider the Gyroid behaviour as isotropic in the elastic range; on the contrary, 
anisotropic behaviour is found in dynamic conditions, where the Zener factor has been estimated to 
be approximately 1.24.  
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Fig. 8. Gyroid elastic stiffness (Cij) for quasi-static behaviour 

 

 
Fig. 9 Gyroid elastic stiffness (Cij) for dynamic behaviour 

 
Simulation results. Both mesoscale and macroscale of scaffold S16C8 have been considered. For 
macroscale simulations two different material models were adopted: the first one was the linear 
elastic-isotropic material, defined in [3] as function of 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 (𝐸𝐸 = 𝑚𝑚𝐸𝐸 ∙ 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑞𝑞𝐸𝐸  ; where 𝑚𝑚𝐸𝐸, 𝑞𝑞𝐸𝐸 are 
reported in Table 4 in [3]) whereas, the second one was the linear elastic-anisotropic material model 
(Cij). The relative density 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 ⁓0.365 to represent the S16C8 structures has been studied. The use of 
the bi-linear material for the elastic part is justified from the Zener factor close to unity. To reduce 
the computational cost and limit their effects the scaffold supports have been removed and only the 
sample was considered (Fig. 3c and Fig. 3d). 
The results in terms of von Mises equivalent stress are reported in Fig. 10. The absence of results 
about the macroscale simulation in dynamic condition is related to the material model calibration that 
is currently under investigation. 
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Fig. 10 Simulation results; (a) Bi-linear material model, (b) Cij stiffness matrix, (c) Base material 

Fig. 11 reports the results of the homogenization and Bi-linear formulation superposed on mesoscale 
load-displacement curves. The results confirmed the optimum homogenization process and the 
isotropic behaviour of Gyroid in the elastic range for quasi-static tests. A slight discrepancy, as 
expected, is present for Gyroid behavior in dynamic condition being the Zener factor far from unity. 
It must be admitted that the homogenization process is likely to suffer from the known difficulties of 
identifying the correct Young's modulus in dynamic tests. 
 

  
(a) (b) 

Fig. 11 Load-displacement curves: comparison between meso and macro-scale numerical simulations for combined 
shear-compression loads 

Conclusion 
In this paper the triply periodic minimal surfaces unit cells, the cubic Gyroid one, was considered. 

The effect of a load direction different from principal unit cell ones was evaluated too. For the material 
homogenization the unit cell C8 was chosen as RVE; the quasi-static and dynamic compression tests 
on base material have been used to identify the elastic modulus.  

The results highlighted the capability of the homogeneous formulation to study porous structures 
made of 3D printed Gyroid surfaces allowing to greatly simplify the FEM modelling process of 
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complex lattice structures. Moreover, the Zener factor close to unity justifies the use of the bi-linear 
material model defined in a previous work in quasi-static conditions. 

Instead, a small discrepancy is present in dynamic conditions. More attention and further 
investigations must be carried out for the Young modulus evaluation in dynamic tests. 
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