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Abstract. Processes, such as deep rolling or induction hardening, have a remarkable influence on the 
material properties within the surface layer of a work piece. Our overall goal is to develop efficient 
two-scale methods, which are able to show the microstructural evolution of the machined material. 
The calculation of a spatially resolved microstructure comes along with a high computational effort. 
To reduce the computational costs, we combine a clustered description of the structure [1] with a 
model order reduction technique for the performed fast Fourier transformations (FFT) [2]. We choose 
a reduced set of Fourier modes, which is adapted to the underlying microstructure and thus based on 
the occurring strain field [3]. By that, we analyze the influence of a mechanical impact on an elasto-
plastically deforming material. 

Introduction 
Our overall goal is a two-scale simulation of different thermo-mechanical machining processes in 
which we use the finite element (FE) method for the macroscopic boundary value problem and fast 
Fourier transforms (FFT) for the analysis at the micro scale, see for instance [4,5]. Nevertheless, in 
this article, we want to focus on model order reduction techniques applied to the microstructural 
computations. 
 
Compared to the more popular FE2 methods, the FE-FFT concept enables a promising reduction of 
the computational effort, see for instance [6,7,8]. The FFT approach is introduced by Moulinec and 
Suquet [2,9] who used a basic fixed-point scheme for the simulation of a microscopic composite 
structure. Further investigations by different research groups deal with the modifications of the 
solution scheme, which show an improved computational performance, such as the implementation 
of Newton-Krylov solvers [10,11,12], augmented Lagrangians [13,14,15] and polarization-based 
algorithms [16]. An overview of FFT-based computations and their applications can be found in [17]. 
 
Although the FFT-based computation already shows an improved performance compared to the 
classical FE simulation, the calculation of the highly resolved microstructure still needs high 
computational costs. Due to that, model order reduction techniques are a condition for efficient 
complex two-scale process simulations. Thus, in the current work, we want to present a coupled 
approach which combines the usage of a reduced set of Fourier modes with a clustered microstructure, 
e.g. [18,19]. 
 
After this short introduction, the next section gives an overview of the used FFT method as well as 
of the applied model order reduction technique, which is based on the idea of using a reduced set of 
Fourier modes. Afterwards the description of the applied clustering technique and of the implemented 
algorithm completes the presentation of the computational structure. Numerical results show the 
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performance of our combined approach, before the last section finally gives a summary and an 
outlook on future investigations.  

 
Notation. Here are some remarks for the better understanding of the following notations: we are using 
Einstein’s summation convention. This means that if one index occurs exactly twice, one can leave 
out the summation symbols: ∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖. In addition, the double contraction denoted by (∙): (∙) of 
two tensors reads 𝑨𝑨:𝑩𝑩 = 𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖. Quantities that refer to the macroscopic scale are marked by (∙)���, 
whereby variables related to the microscale waive a specific notation. 

Microstructural Analysis Using Fast Fourier Transformations  
General Concept. Within a two-scale simulation, every macroscopic 
point 𝒙𝒙� corresponds to an underlying microstructure. Fig. 1 shows an 
exemplary inhomogeneous microstructure, in which the stiffness as well 
as inner variables, such as a plastic strain or a phase concentration, 
depend on the microstructural position 𝒙𝒙. The total microscopic strain 
𝜺𝜺(𝒙𝒙�,𝒙𝒙) accounts for two contributions: one of the macroscale 𝜺𝜺�(𝒙𝒙�) and 
another one due to the fluctuations within the microstructure 𝜺𝜺�(𝒙𝒙�,𝒙𝒙). One 
can write 

 
𝜺𝜺(𝒙𝒙�,𝒙𝒙) =  𝜺𝜺�(𝒙𝒙�) + 𝜺𝜺�(𝒙𝒙�,𝒙𝒙) .                                      (1) 

 
For a better overview, we neglect the dependency on the macroscopic 
position in the following. Besides Eq. 1, the balance of linear momentum  

div 𝝈𝝈(𝒙𝒙) =  𝟎𝟎                                (2) 
 
as well as a constitutive relation for the stress 𝝈𝝈(𝒙𝒙) = 𝝈𝝈(𝒙𝒙, 𝜺𝜺(𝒙𝒙),𝜶𝜶(𝒙𝒙)), which might depend on a set 
of inner variables 𝜶𝜶(𝒙𝒙), complete the heterogeneous boundary value problem. As presented in Eq. 2, 
the microscale is free of external forces, which already influence the macroscopic boundary value 
problem. Based on [20], we now introduce the so-called polarization stress  

𝝉𝝉(𝒙𝒙) =  𝝈𝝈(𝒙𝒙) − ℂ0: 𝜺𝜺(𝒙𝒙)                                (3) 
 
which describes the stress deviation compared to a homogeneous reference material with stiffness ℂ0. 
Inserting the relation Eq. 3 into the balance equation Eq. 2 enables  

div�ℂ0: 𝜺𝜺(𝒙𝒙)� + div 𝝉𝝉(𝒙𝒙) =  𝟎𝟎                                (4) 
 
and hence, the handling of the divergence of the polarization stress as an external force. Based on the 
works by [21,22], the influence of 𝝉𝝉 on 𝜺𝜺(𝒙𝒙) results from the convolution integral 

𝜺𝜺(𝒙𝒙) = 𝜺𝜺�(𝒙𝒙�) − ∫ Γ0(𝒙𝒙 − 𝒙𝒙′): 𝝉𝝉(𝒙𝒙′) d𝒙𝒙′ 
Ω  .                               (5) 

 
Herein, the so-called Green’s operator Γ0(𝒙𝒙 − 𝒙𝒙′) maps the polarization stress at a point 𝒙𝒙′ on the 
strain at a point 𝒙𝒙. The rather complex solution of the convolution integral motivates the calculations 
performed in Fourier’s space based on [2,9]. In the following, all the quantities which are related to 
Fourier’s space are given by (⋅)� . Additionally, corresponding to a coordinate in the real space, the 
quantities depend on Fourier modes 𝝃𝝃. Accordingly, Eq. 5 simplifies to 

𝜺𝜺�(𝝃𝝃) = �−𝚪𝚪
�0(𝝃𝝃): 𝝉𝝉�(𝝃𝝃)  𝑓𝑓𝑓𝑓𝑓𝑓 𝝃𝝃 ≠ 𝟎𝟎

           𝜺𝜺�             𝑓𝑓𝑓𝑓𝑓𝑓 𝝃𝝃 = 𝟎𝟎 ,                               (6) 

Fig. 1 Heterogeneous 
microstructure. 
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wherein Green’s operator and function in Fourier’s space read 

Γ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 (𝝃𝝃) = 1
2
�G𝑖𝑖𝑖𝑖

0 (𝝃𝝃)𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖 + G𝑖𝑖𝑖𝑖0 (𝝃𝝃)𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖�,    G𝑖𝑖𝑖𝑖
0 (𝝃𝝃) = (ℂ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖)−1 . (7) 

 
The back transformation of 𝜺𝜺�(𝝃𝝃) into the real space gives the total microscopic strain 𝜺𝜺(𝒙𝒙). The 
calculations using Eq. 3 and Eq. 6 as well as the Fourier transformations and back transformations 
are repeated until convergence. 
 
Reduced Set of Fourier Modes. The basic idea of the applied model order reduction technique is 
that not all the Fourier modes are necessary for the computations in Fourier space. Instead of using 
the firstly introduced fixed sampling pattern [23], we use a sampling pattern 𝝃𝝃 ℛ  that is adapted to the 
underlying microstructure. We introduced two methods to identify the choice of Fourier modes 
[3,24].  
 
The first method considers the underlying geometry of a material that consists of two different phases, 
namely a matrix material and inclusions. By the introduction of a characteristic function 𝑔𝑔(𝒙𝒙) that is 
zero in the matrix Ω𝑀𝑀 and one in the inclusions Ω𝐼𝐼  

𝑔𝑔(𝒙𝒙) = �0 𝑓𝑓𝑓𝑓𝑓𝑓 𝒙𝒙 𝜖𝜖 Ω𝑀𝑀 
1 𝑓𝑓𝑓𝑓𝑓𝑓 𝒙𝒙 𝜖𝜖 Ω𝐼𝐼   

                                (8) 

 
and its transformation into Fourier’s space, one can identify the modes with the highest amplitudes 
for this specific material. The choice of ℛ % of the modes with the largest amplitudes then defines 
the related sampling pattern, see Fig. 2. More details can be found in [24].  

 
The geometrically adapted sampling 
pattern serves as a good choice for 
linear elastic materials. For a more 
complex material behavior, we 
introduced a strain-based sampling 
pattern in [3]. The idea is similar to the 
procedure in the geometrically adapted 
sampling pattern: we also choose the ℛ 
% modes with the highest amplitudes. 
Instead of the function 𝑔𝑔(𝒙𝒙), the norm 
of the converged microscopic strain 
field of the previous load step leads to 
the updated and thus strain-based 
sampling pattern. 
 
In the current work, we choose the second approach. Only for the first load step, we will apply the 
geometrically adapted reduced set of Fourier modes. 

Clustering Approach and Coupled Algorithm 
K-Means Clustering. In addition to the strain-based model order reduction technique for the 
calculations performed in Fourier space, we want to use a clustered microstructure based on k-means 
clustering to reduce the computational effort in real space. The works of [18,19] give an overview of 
the method. The starting point is the construction of a strain-concentration tensor 𝑨𝑨(𝒙𝒙,𝒙𝒙�) which 
describes the microscopic strain 𝜺𝜺(𝒙𝒙,𝒙𝒙�) resulting from a macroscopic strain 𝜺𝜺�(𝒙𝒙�): 

𝜺𝜺(𝒙𝒙,𝒙𝒙�) = 𝑨𝑨(𝒙𝒙,𝒙𝒙�): 𝜺𝜺�(𝒙𝒙�) . (9) 

Fig. 2 Left: Characteristic  function: for inclusions g(x)=1 (black), for 
matrix g(x)=0 (white). Right: Geometrically adapted reduced sampling 
pattern, see also [24]. 
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The main idea of the clustering technique is now to assign the grid points 𝐺𝐺𝐺𝐺 of the microstructure to 
the 𝑘𝑘 clusters in such a way that the sum of the differences of the stress concentration tensors of the 
individual grid points 𝑨𝑨𝐺𝐺𝐺𝐺 compared to the related averaged tensor for the clusters 𝑨𝑨�𝐽𝐽 is minimized. 
The minimization problem reads 

𝓢𝓢 = argmin
𝒮𝒮′

∑ ∑ �𝑨𝑨𝐺𝐺𝐺𝐺 − 𝑨𝑨�𝐽𝐽�
2

𝐺𝐺𝐺𝐺∈𝒮𝒮𝐽𝐽
𝑖𝑖
𝐽𝐽=1 , (10) 

 
wherein 𝓢𝓢 contains the optimized sets of grid points 𝒮𝒮𝐽𝐽 distributed to each cluster 𝐽𝐽. 
 
Coupled Algorithm. Our current work combines the use of a strain-based sampling pattern for the 
FFT-based calculations and the clustering approach presented in the former sections. The calculation 
of the clusters as well as of the 
geometrically adapted sampling 
pattern for the first time step takes 
place in an initialization step. For 
each time step, we applied the 
algorithm presented in Fig. 3, 
which is based on a fixed-point 
iteration scheme by [2].  The 
transformation of the polarization 
stress into Fourier’s space enables 
the calculation of the strain in 
Fourier space based on Eq. 6 and 
its back transformation in the real 
space. Afterwards, the strain is 
homogenized for each cluster by 
calculating the average for the 
𝑛𝑛𝐺𝐺𝐺𝐺𝐽𝐽 grid points. For each cluster 𝐽𝐽, 
we then calculate the stress and 
inner variables. We repeat this 
procedure until convergence of the 
strain field. Finally, the Fourier 
transformation of the norm of the 
converged strain field leads to the 
updated sampling pattern for the next load step. 

Numerical Results 
To show the performance of the 
coupled algorithm, we present the 
numerical result for a 
microstructure consisting of two 
different materials as presented in 
Fig. 4 (left). The elastic parameters 
for the inclusions (black) read 𝜇𝜇𝐼𝐼 =
2.0 GPa and 𝜆𝜆𝐼𝐼 = 2.0 GPa. The 
matrix (gray) with 𝜇𝜇𝑀𝑀 = 1.0 GPa 
and 𝜆𝜆𝑀𝑀 = 1.0 GPa is also able to 
deform plastically with a yield limit 

Fig. 3 Algorithm for the FFT-based calculations using the strain-based 
sampling pattern and the clustered microstructure. 

Fig. 4 Two-phase microstructure (left), resulting stress distribution for the 
reference solution with full set of Fourier modes and without clustering 
(right). 
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of 𝜎𝜎𝑦𝑦0,𝑀𝑀 = 0.01 GPa and an isotropic hardening parameter of 𝐻𝐻𝑀𝑀 = 0.01 GPa. Fig. 4 (left) shows the 
full-field solution for the stress component 𝜎𝜎𝑥𝑥𝑥𝑥 as a result of an in 25 steps applied macroscopic strain  

𝜺𝜺� = � 0.1 0.02
0.02 −0.1� . (11) 

 
Thereby, 𝑛𝑛𝐺𝐺𝐺𝐺 = 256 × 256 grid points and an unreduced set of Fourier modes is used without 
clustering. In the following, this result serves as the reference solution.  

Fig. 5 Simulations of the microstructure with different numbers of clusters for the matrix and the inclusions, 𝑘𝑘𝐼𝐼 and 𝑘𝑘𝑀𝑀, 
and a varying percentage of used Fourier modes ℛ: contour plot of the absolute error of the stress component ∆𝜎𝜎𝑥𝑥𝑥𝑥  
compared to the reference solution with unreduced number of modes and without clustering. 
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We performed calculations for different numbers of clusters for the matrix and inclusions, 𝑘𝑘𝐼𝐼 and 𝑘𝑘𝑀𝑀, 
as well as for a varied percentage of used Fourier modes ℛ. Fig. 5 shows the norm of the difference 
of the stress component compared to the reference solution 𝜎𝜎𝑥𝑥𝑥𝑥

𝑟𝑟𝑟𝑟𝑟𝑟 and given by  

∆𝜎𝜎𝑥𝑥𝑥𝑥 = �𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑥𝑥𝑥𝑥
𝑟𝑟𝑟𝑟𝑟𝑟� . (12) 

The related strain-based sampling pattern of the last load step is presented in Fig. 6. For a more 
detailed analysis of the model order reduction technique, we kindly refer to [3].  

 
The results in Fig. 5 show that as expected the increase of the number of clusters as well as the 
percentage of used Fourier modes lead to a decreased error in the stress distribution. But, already for 
a low number of clusters and Fourier modes the results show a good accordance to the reference full-
field solution. Fig. 7 allows a more detailed analysis of the computations. It shows the microscopic 
error (left) depending on the percentage of Fourier modes ℛ and calculated by 

ℰ = ∑ �𝝈𝝈−𝝈𝝈𝑟𝑟𝑟𝑟𝑟𝑟�
�𝝈𝝈𝑟𝑟𝑟𝑟𝑟𝑟�

𝑛𝑛𝐺𝐺𝐺𝐺
𝑛𝑛=1

1
𝑛𝑛𝐺𝐺𝐺𝐺

 . (13) 

 
In Fig. 7, the black lines refer to the method using a reduced set of modes but without clustering. The 
results underline the expectations and findings from the contour plot in Fig. 5: Also, the microscopic 
error decreases with a higher number of used clusters as well as of used Fourier modes. The error, 
which is only slightly higher than that one without clustering, shows a converging behavior. The 
simulations also show an improvement of the speed up factor, see Fig. 7 (right), which relates the 

 

Fig. 7 Microscopic error (left) and speed up factor (right) for simulations with different numbers of clusters for the matrix 
and the inclusions, 𝑘𝑘𝐼𝐼 and 𝑘𝑘𝑀𝑀, and a varying percentage of used Fourier modes ℛ compared to the reference solution 
with unreduced number of modes and without clustering. 

Fig. 6 Strain-based sampling pattern for different percentages of used Fourier modes ℛ. 
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computation time used for the individual simulation to the time needed for the reference solution. 
Obviously, the decrease of used clusters not necessarily leads to a further reduction of computation 
times. The reason for that lies in the worse convergence of the strain field due to the clustered stress 
field within the microstructure. This motivates future investigations on that topic to improve the 
correspondence between the spectral solver and the clustered microstructure.  

Summary 
We presented a coupled approach to analyze microstructural evolutions in a highly resolved manner. 
The ansatz accounts for two different model order reductions techniques: a strain-based sampling 
pattern for the used fast Fourier transformations and a clustered microstructure for the computations 
in real space. The results show an improvement of the speed up factor that comes along with an 
acceptable increase of the microscopic error. In future works, we will further investigate the 
convergence behavior of the calculations also using more robust solvers like Newton-Krylov, see for 
instance [10,11,12]. The motivation for that is the high number of iterations that is necessary when a 
lower number of clusters is used. Additionally, the implementation within a finite element software 
will enable two-scale process simulations with a reduced computation time.  
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