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Abstract. Towards the growing trends in lightweight, flexible, and optical advantages, thin glasses 
become key components in numerous applications such as consumer electronics like foldable 
smartphones, or automotive interiors. Nonisothermal glass molding promises a viable technology for 
the cost-efficient production of precision glass components. In the existing production, the quality of 
the glass products can only be accessed at the end of the hot forming process. Due to high rates of 
product failures often appeared in the precision glass molding processes, the current quality control 
of the produced optical products suffers low process efficiency. This work introduces an enabling 
approach for monitoring the product quality in real-time using thermography and machine learning. 
Specifically, the acquisition of the temperature fields of the glass components during the hot forming 
stage enabled by an infrared thermographic camera allows machine learning to predict the final shape 
of the molded components at the end of the forming process. Several transfer learning models have 
been investigated to demonstrate the proposed method. To further enhance the prediction 
performance, self-built convolutional neural network models were developed using different types of 
image data. By incorporating the time-series image data as an input to the learning models, the 
prediction performance was achieved. The model built in the present work demonstrates an excellent 
prediction accuracy where the difference between the measured and predicted shapes of the glass 
products can be kept at low double-digit micrometers. Such accuracy achieved by our self-developed 
machine learning model promisingly satisfy the quality control in serial productions of numerous 
precision optical glass components in automotive and consumer electronics sectors.  

Introduction 
The automotive industry is undergoing a rapid transformation. Technological advancements for 

autonomous driving, efficient energy consumption, as well as increasingly safe and affordable driving 
experiences are shaping the future of automobiles. Today, many concept cars strive for making the 
future automobiles lighter, safer, and smarter. This fact pushes automakers to innovate lighter, 
tougher, and more optically and functionally advanced automotive interiors and exteriors [1]. Due to 
its mechanical and optical advantages, thin glass holds a key material for such inevitable innovation 
[2]. 

Glass components for the automotive future are setting ever-increasing demands for glass 
manufacturers towards highly precision and geometrically complex but low-cost products. 
Fabrications of brittle glass components with high precision at large volumes essentially require 
advancements in glass processing technology. In fact, the most common method via grinding and 
polishing is not applicable for thin glass due to the unavoidable deformation or cracks caused by 
thermo-mechanical stress on the glass surface and between the glass and clamping parts [3]. Instead, 
a replicative manufacturing, namely Nonisothermal Glass Molding (NGM), has been developed and 
becomes a viable technology for the cost-efficient production of glass optics [4,5]. In more recent 
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years, the nonisothermal molding principle has been extended for thin glass forming by applying 
suitable thermal-mechanical loading means such as thermal slumping, vacuum pressure, press 
bending, and deep drawing [6]. The implementation of various loading enablers allows this newly 
developed glass forming process for the production of complex, precision, [7–9] and microstructure-
integrated optical components [10–13]. 

 

 
Fig. 1. Process chain of thin glass forming 

 
Fig. 1 introduces the process chain of thin glass forming using vacuum assistance. The process 

starts with a heating step of the glass and mold parts. As soon as the glass temperature is sufficient 
for forming, vacuum pressure is applied, and the glass part is deformed into the mold cavity to a 
desired shape in a couple of seconds. Afterwards, it is demolded and then undergoes an annealing 
step where its temperature is slowly decreased to room temperature in order to release the internal 
stress. After annealing, the molded component is ready-to-use and requires no further post-processing 
steps such as grinding or polishing. The entire molding process of a glass unit takes place in a few 
minutes allowing a cost-efficient solution for serial production in optical glass industry.  

In the existing production, accuracy and possible glass defects can only be realized at the end of 
the forming process by relevant off-line measurements when the molded components are entirely 
cooled down at room temperature [14–16]. It is, however, emphasized that imperfections of the 
molded components such as form deviation, chill ripples, or glass cracks are primarily driven by the 
molding step [17–20]. Those are the common defects observed in the nonisothermal molding process, 
mainly resulted from the high heat exchanges at the glass-mold interface [21,22] as well as the 
complex thermo-viscoelastic material behaviors of glass at elevated molding temperatures [23–25]. 
In serial production, if the defects are not detected during the molding step, it commonly results in a 
large number of glass rejects and high energy cost vain to anneal the glass failures [26]. Accordingly, 
the glass optic manufacturing industry is steadily raising demands on real-time quality control in the 
hot forming of thin glasses. 

This work presents an enabling approach for the real-time monitoring and quality control of the 
glass components during the molding process. The essence of this research is based on the hypothesis 
stating that there exists an underlying relationship between the form deviation and temperature fields 
of the glass components. To demonstrate, an infrared (IR) thermographic camera was employed to 
record the temperature fields of the glass components right after the molding step. In the following, 
image processing techniques were carried out to extract the temperature data and essential features 
that eventually enable the discovery of the relationship between the temperature field and the final 
shape of the molded glass. To this end, we implemented machine learning (ML) and established 
Convolution Neural Networks (CNN) to accomplish the relationship. By using the time-series 
temperature images after the molding step, the CNN model developed by this study reveals an 
excellent prediction accuracy of the final glass shapes after annealing. The findings make it possible 
for the real-time quality control in glass molding process by exploiting the IR-thermographic and 
machine learning techniques. 

Methodology 
Experimental procedure and data acquisition. To demonstrate our solution approach for the 

enabling real-time quality control in thin glass forming, a display mirror was chosen as an optics 

Heating Molding Demolding Annealing Ready-to-use optics

Head-up Display
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demonstrator (Fig. 2a). For this demonstrator, vacuum pressure was applied to deform glass plates. 
Having introduced in Fig. 1, the glass plate and mold system were heated up, and then vacuum was 
applied when glass reached a temperature sufficient for molding. After molding, the deformed glass 
was quickly driven out from the heating furnace where its temperature was recorded for 10 seconds 
by the IR-camera (Fig. 2b) before it is transferred to the annealing oven. The VarioCAM® HD Head 
produced by InfraTec was used to measure the glass temperature. The camera lens firstly collects the 
IR radiation emitted from the measuring objects at the same time and then reproduces the thermal 
radiation on the detector elements. The detector absorbs this radiation in the spectral range from 7.5 
to 14 μm. The temperature change gathered by the detector, thereof, results in a signal that can be 
analyzed electronically. This camera enables the measurement accuracy of ±1 °C. A full‐frame rate 
of 30 Hz with high resolution of 1.024 × 768 pixels was used for the temperature measurement [27]. 

 

 
Fig. 2. (a) Experimental setup, (b) schematic description of the data acquisition. (1) IR-camera, (2) 
vacuum system, (3) furnace, (4) mold system, (5) deformed glass before annealing, and (6) final 
molded glass after annealing (optics demonstrator). 

 
A total of 121 molding experiments was conducted to produce the data for this study. The 

experiments consisted of different sets of the molding parameters including glass temperature, mold 
temperature, vacuum pressure, and holding time while applying vacuum. For each experiment, with 
the sampling rate 30 Hz and the recording time of 10 seconds, a total of 300 images were collected, 
accordingly. Fig. 3(a) introduces the time-series images showing the temperature fields of the molded 
glass components. Goal of this research is to utilize the time-series images collected by the IR-camera 
during the recording period for predicting the final shape of the molded glass mirrors using machine 
learning. In other words, by relying on the IR-images collected directly after the molding step makes, 
it is possible to control the product quality in real-time. 

 

 
Fig. 3. (a) Time-series images taken by the IR-camera, (b) procedure to extract glass temperature 
field, (c) input data for machine learning models 
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Data pre-processing. The images captured by the IR-camera were given as inputs to the machine 
learning models. However, a pre-processing of those images (raw data) is necessary before they can 
be used sufficiently in the learning models. As observed in Fig. 3(a), the raw IR-images indicate the 
presence of surrounding noise in the vicinity of the glass specimen, which needs to remove so that 
only the temperature data of glass were taken in the inputs. To this end, Canny Edge Detection 
algorithm was employed to detect the glass boundary. A mask was generated for each image that 
contains information about the position of the glass specimen in the image. Subsequently, masking 
was done on the original image which was then followed by cropping. At the end of pre-processing 
step, the image was transformed to the final resolution of 500 × 500 pixels from the initial resolution 
of 768 × 1024 pixels. The image was resized as per the requirement of the CNN model. This procedure 
can be visualized in Fig. 3(b), and the input data for the learning models are shown in Fig. 3(c). 

Furthermore, the final shapes of the molded glass optics were measured after the annealing step 
by employing a tactile measuring device. The resulting shape measurement contains 69,000 data 
points which was reduced to 100 data points by means of a standardization procedure. The 
standardization algorithm included end trimming, rotation, offset elimination and finally size 
reduction through cubic spline interpolation. The measured shape with reduced data points used as 
output vectors is shown in Fig. 4. Both the input images and the output vectors were normalized to 
values between 0 and 1 to obtain optimum performance from the CNN models. Then, the dataset was 
split into a training set and test set, each of which has 80% and 20% of the total data, respectively. In 
addition, a validation set containing 20% of the training dataset was given to control the overfitting 
nature of the model. 

 
Selection of learning models. Machine learning algorithms for any domain are typically selected 

by considering the type of input and output data, and the size of the dataset. A convolutional neural 
network model is a commonly used algorithm when the input data is an image due to its ability to 
learn the spatial relationship between different data points. The performance of the CNN model is 
mainly dependent on the network architecture and the dataset. In this work, three approaches were 
considered to build the predictive models. The first approach was the use of transfer learning where 
the feature representation from a CNN model trained on a larger dataset in another domain can be 
reused for our domain dataset [28,29]. The rationale of this approach is that the lower layers of the 
CNN model trained on a very large dataset mostly detect generic features [30,31], which can be used 
for other domains as well. Secondly, a self-built CNN model architecture was targeted. The topology 
of the model was chosen with the help of a hyperparameter tuning algorithm such that the validation 
error of the model with optimum hyperparameters is minimum. It is noted that all aforementioned 
models took only one single frame as the input, meaning that the time-series data were not considered 
in developing those models. In this study, the first frame was chosen. Lastly, we developed a 3D CNN 
model where all images as time-series data collected over the entire data recording period were taken 
in the input. 

 
Transfer learning models. Five CNN models that are pre-trained on the ImageNet dataset [32] 

were chosen in this work with taking their accuracy on the ImageNet dataset and their model 
complexity into account. All the models are available in the Keras API of TensorFlow. The fully 
connected layers of the pre-trained models were not included; instead, randomly initialized dense 
layers were added to the model. The weights of the pre-trained layers were frozen and only the 
weights in the additional dense layers were trained during the training process. The hyperparameters 
of the model such as the number of fully connected layers, the number of neurons, and the activation 
function were decided by searching the entire hyperparameter space. The parameters of each model 
are given in Table 1. 
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Table 1. Hyperparameters of the pre-trained models 
 VGG-16 ResNet-50 MobileNet NasNetMobile DenseNet-169 
Number of FCL 6 4 6 5 5 

Number of neurons 50 300 400 100 300 

Activation function ReLU Sigmoid Sigmoid Sigmoid Sigmoid 
Total number of 
pretrained parameters 

14, 714, 
688 

23, 534, 
592 3, 228, 864 4, 322, 978 12, 484, 480 

 
2D CNN model. The self-built CNN model, named as 2D CNN model (CNN-2D), consists of 

repeating convolution modules followed by fully connected layers (Fig. 4). Each convolution module 
consists of two 2D convolutional layers and a 2D max-pooling layer. The input to this model was a 
two-dimensional tensor containing the grayscale image of the temperature data. The model 
hyperparameters such as filter size or pool size were chosen through the randomized search algorithm. 
Each model was trained for 100 epochs and the model with the best 5-fold cross-validation error was 
selected. The hyperparameter grid as well as the optimum parameters are given in Table 2. 

 

 
Fig. 4. The architechure of CNN-2D model 

 
Table 2. Hyperparameters of self-built models 

Hyperparameters 
CNN-2D  CNN-3D 

Parameter grid Opt. parameter Parameter grid Opt. parameter 

No. of FC layers 3 to 7 5 2 to 7 4 

No. of neurons 50 to 300 100 50 to 300 274 
No. of convolution 
modules 1 to 4 1 1 to 3 2 

Activation function  
in FCL 

[ReLU, Linear, 
Tanh, Sigmoid] Linear [ReLU, Linear, 

Tanh, Sigmoid] Linear 

Filter size 3 to 7 7 3 to 7 3 

No. of filters 4 to 16 8 4 to 32 8 

Pool size 2 to 7 5 2 and 3 2 
 
3D CNN model. During the data recording period, the IR-camera generated 300 frames of thermal 

images per experiment. The 3D CNN model (CNN-3D) was built by taking the entire serial frames 
over the recording time as the output. Due to the heat exchanges to environment during the recording 
time, each frame, corresponding to a time interval, has a different temperature field. The evolution of 
temperature distribution for each molded glass mirror was also different due to the individual set of 
parameters chosen for each experiment. Based on the assumption that the evolution of temperature 
distribution influences on the final shape of the glass products, we built a three-dimensional input 
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tensor for each experiment where the third dimension refers to the time or, in other words, the frame 
number (Fig. 3c). A similar architecture to CNN-2D was built, except 3D convolutional layers and 
3D max-pooling layers were employed here instead. Since it is time-intensive for training CNN-3D, 
the use of a random search algorithm for hyperparameter tuning is not feasible. For this reason, the 
hyperparameters were determined through the hyperband algorithm from the KerasTuner library. 
Hyperband is the algorithm that adopts random search with adaptive resource allocation techniques 
such that the only promising models are trained for a higher number of epochs [33]. The resulting 
optimum hyperparameters are indicated in Table 2. 

All the models are trained with the Adam optimization method [34] with a learning rate of 0.001 
and using mean squared error as the loss function [35,36]. Overfitting of the models was prevented 
by the early stopping method [37]. 

Results and Discussions 
All models were implemented in Python and TensorFlow. The training and evaluation of each 

model were repeated by 20 times to account for their variability. Performance of training and testing 
set of those models evaluated by root mean squared error (RMSE) is presented in Fig. 5(a-b).  Of 
those models, DenseNet-169 revealed the best performance because of its least mean and variance of 
errors. By computing the difference between the prediction results of the DenseNet-169 and the 
experimentally measured shapes for the test set, an average deviation of 58.45 micron was achieved, 
which is acceptable for the form deviation required for many of the optical display components 
produced by the glass molding processes. The shape prediction enabled by the DenseNet-169 and the 
measured shape for one molded glass mirror are demonstrated in Fig. 5(c). 

 

 
Fig. 5. Model performance using the first frame data. (a) Training error, (b) testing error, (c) 
comparison of shape predicted by DenseNet-169 and an experimentally measured data in test set. 
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It was observed that MobileNet produced the second best generalization error on the test set, 
followed by ResNet50.  It is emphasized that despite being trained only on a small dataset, CNN-2D 
is able to outperform other pre-trained models, demonstrating the power of the self-built CNN model 
developed in this study. Furthermore, besides its sufficiently accurate prediction, the CNN-2D has 
significantly low model complexity and consequently training time, making it more practical for real-
time applications over either DenseNet or MobileNet. 

As CNN-2D was able to provide well prediction accuracy with the first frame of the thermal image 
data, it raises a question whether the choice of other frames has any effect on the model performance. 
To answer it, CNN-2D was trained individually using the 1st, 150th and 300th frame. The result of the 
model evaluation for different frames is exhibited in Fig. 6. We observed that the model has 
comparable means and standard deviations of error regardless of the chosen frame number. Hence, it 
can be concluded that the choice of the frame is not critical. 

 
Fig. 6. Performance of CNN-2D using different frame data. (a) Training error, (b) testing error. 
 
Finally, this study aims to discern whether the incoporation of the time-series image data is 

beneficial for further enhancement of the shape prediction. For this purpose, all 300 frames collected 
by the IR-camera over the entire recording period were taken as inputs to CNN-3D. Performance of 
this model, in comparison with to CNN-2D, is presented in Table 3. Overall, CNN-3D enables lower 
mean and minimum errors achieved by both training and test sets, implying that it has better 
generalization ability than CNN-2D. This finding clearly points out that the time-series image data 
contain more informative correlations between the temperature and the final product shape than a 
single frame image. During the recording period, the molded glass components undergo continuous 
thermal exchanges with surrounding environment, and the process of temperature drops due to the 
heat loss to the environment decisively influences on the final shape. The availability of the data 
during this cooling period prompts the model to better learn the influences of the environment on the 
final shape. 

 
Table 3. Statistical description of model performance 

Statistical parameters 
CNN-2D  CNN-3D 

Training Testing Training Testing 

Mean 0.0086 0.0140 0.0066 0.0132 

Standard deviation 0.0013 0.0011 0.0021 0.0020 

Minimum 0.0060 0.0121 0.0041 0.0100 

 

(a) (b)

0.004

0.008

0.012

0.016

0.020

0.004

0.008

0.012

0.016

0.020

R
M

SE
 [1

]

R
M

SE
 [1

]

2318 Achievements and Trends in Material Forming



 

However, it is noteworthy pointing out that the use of time-series data significantly increases the 
model complexity and consequently long training process. In addition, we observed high variance of 
the CNN-3D model, indicating that its performance is highly sensitive to its initial weights and 
stochastic nature of the training [38]. Therefore, depending on the targeted accuracy of the final 
products, relevant learning models should be decided by compromising the prediction accuracy of 
the model and time required for the training process. 

Summary 
This work demonstrates an enabling approach for real-time quality control in the production of 

precision optical glass components using the infrared thermographic technique and machine learning. 
The acquisition of temperature fields during the molding stage enabled by the IR-camera allows us 
to immediately realize the final shape of the molded glass components at the end of the hot forming 
process. The prediction of the final shape is permitted in real-time by the implementation of machine 
learning with relevant convolution neural network architectures. Based on the self-built learning 
models, we demonstrated that the difference of low two micro digits between the predicted and 
experimentally measured shapes is promised. The prediction accuracy achieved by developed 
machine learning model is typically sufficient for quality control of numerous precision components 
in the optical glass markets today. Therefore, the proposed method is highly promising for industrial 
applications to reduce the efforts for measuring the glass products after hot forming process, to 
increase the process efficiency, and to enable the process automation. 

Acknowledgement 
Financial support of the Research Project "Glass4AutoFuture" sponsored by the German Science 

Foundation (DFG) and Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 
within the Fraunhofer-DFG Transfer Program is gratefully acknowledged. 

References 

[1] Bax & Company, A vision on the future of automotive lightweighting. Alliance - A report on the 
European Union’s Horizon 2020. Grant Agreement No. 723893. 

[2] Information on. https://www.ipt.fraunhofer.de/en/projects/glass4autofuture.html. 

[3] A.T. Vu, P.-A. Vogel, O. Dambon, F. Klocke, Vacuum-assisted precision molding of 3D thin 
microstructure glass optics, in: Fiber Lasers and Glass Photonics: Materials through 
Applications, Strasbourg, France, SPIE, Bellingham, Washington, USA, 2018. 

[4] A.T. Vu, H. Kreilkamp, O. Dambon, F. Klocke, Nonisothermal glass molding for the cost-
efficient production of precision freeform optics, Opt. Eng 55 (2016) 71207. 

[5] T. Zhou, J. Yan, N. Yoshihara, T. Kuriyagawa, Study on nonisothermal glass molding press for 
aspherical lens, JAMDSM 4 (2010) 806–815. 

[6] P.-A. Vogel, A.T. Vu, H. Mende, T. Grunwald, T. Bergs, R.H. Schmitt, Approaches and 
methodologies for process development of thin glass forming, in: Optifab 2019, Rochester, 
United States, SPIE, Bellingham, Washington, USA, 2019, p. 68. 

[7] H. Zang, J. Yu, Y. Zhou, B. Tao, Non-isothermal molding technology research of ultra-precision 
glass lens, in: International Symposium on Optoelectronic Technology and Application 2014: 
Laser Materials Processing; and Micro/Nano Technologies, Beijing, China, SPIE, 2014, 
p. 929517. 

Key Engineering Materials Vol. 926 2319



 

[8] H. Kreilkamp, A.T. Vu, O. Dambon, F. Klocke, Replicative manufacturing of complex lighting 
optics by non-isothermal glass molding, in: Polymer Optics and Molded Glass Optics: Design, 
Fabrication, and Materials 2016, San Diego, California, United States, SPIE, 2016, 99490B. 

[9] H. Kreilkamp, A.T. Vu, O. Dambon, N.F. Klocke, Nonisothermal glass moulding of complex 
LED optics, in: S.K. Sundaram (Ed.), 77th Conference on Glass Problems, John Wiley & Sons, 
Inc, Hoboken, NJ, USA, 2017, pp. 141–149. 

[10] Y. Zhong, R. Du, L. Zhang, A.Y. Yi, Structrual Coloration of Surfaces With Microstructures 
Replicated by Non-Isothermal Precision Glass Molding, in: Proceedings of the ASME 15th 
International Manufacturing Science and Engineering Conference - 2020, Virtual, Online, the 
American Society of Mechanical Engineers; Curran Associates Inc, New York, NY, Red Hook, 
NY, 2020. 

[11] C. Rojacher, A.T. Vu, T. Grunwald, T. Bergs, Precision glass molding of infrared optics with 
anti-reflective microstructures, in: Optical Manufacturing and Testing XIII, Online Only, United 
States, SPIE, 24.08.2020 - 28.08.2020, p. 30. 

[12] A.T. Vu, C. Rojacher, T. Grunwald, T. Bergs, Molded anti-reflective structures of chalcogenide 
glasses for infrared optics by precision glass molding, in: Optifab 2019, Rochester, United States, 
SPIE, Bellingham, Washington, USA, 2019, p. 67. 

[13] T. Zhou, J. Yan, T. Kuriyagawa, High-Efficiency and Ultra-precision Glass Molding of 
Aspherical Lens and Microstructures, in: Proceedings of International Symposium on 
Ultraprecision Engineering and Nanotechnology. 

[14] H. Kreilkamp, J.-H. Staasmeyer, L. Niendorf, The Future of Glass Optics Replication, Optik & 
Photonik 11 (2016) 28–31. 

[15] Y. Zhang, G. Yan, Z. Li, F. Fang, Quality improvement of collimating lens produced by precision 
glass molding according to performance evaluation, Opt. Express 27 (2019) 5033–5047. 

[16] F. Wang, Y. Chen, F. Klocke, G. Pongs, A.Y. Yi, 2009. Numerical Simulation Assisted Curve 
Compensation in Compression Molding of High Precision Aspherical Glass Lenses. Journal of 
Manufacturing Science and Engineering 131, 011014. https://doi.org/10.1115/1.3063652. 

[17] G. Liu, A.T. Vu, O. Dambon, F. Klocke, Glass Material Modeling and its Molding Behavior, 
MRS Advances 2 (2017) 875–885. 

[18] T.D. Pallicity, A.-T. Vu, K. Ramesh, P. Mahajan, G. Liu, O. Dambon, Birefringence 
measurement for validation of simulation of precision glass molding process, J Am Ceram Soc 
100 (2017) 4680–4698. 

[19] A.T. Vu, H. Kreilkamp, B.J. Krishnamoorthi, O. Dambon, F. Klocke, A hybrid optimization 
approach in non-isothermal glass molding, in: AIP Conference Proceedings, Nantes, France, 
2016, p. 40006. 

[20] W. Yang, Z. Zhang, W. Ming, L. Yin, G. Zhang, Study on shape deviation and crack of ultra-
thin glass molding process for curved surface, Ceramics International (2021). 

[21] A.T. Vu, T. Helmig, A.N. Vu, Y. Frekers, T. Grunwald, R. Kneer, T. Bergs, Numerical and 
experimental determinations of contact heat transfer coefficients in nonisothermal glass molding, 
J Am Ceram Soc 103 (2020) 1258–1269. 

[22] T. Zhou, Q. Zhou, J. Xie, X. Liu, X. Wang, H. Ruan, Surface defect analysis on formed 
chalcogenide glass Ge22Se58As20 lenses after the molding process, Appl. Opt. 56 (2017) 8394–
8402. 

2320 Achievements and Trends in Material Forming



 

[23] A.T. Vu, Avila Hernandez, Rocio de los Angeles, T. Grunwald, T. Bergs, Modeling 
nonequilibrium thermoviscoelastic material behaviors of glass in Nonisothermal Glass Molding, 
J Am Ceram Soc (2022). 

[24] A.T. Vu, T. Grunwald, T. Bergs, Thermo-viscoelastic Modeling of Nonequilibrium Material 
Behavior of Glass in Nonisothermal Glass Molding, Procedia Manufacturing 47 (2020) 1561–
1568. 

[25] A.T. Vu, A.N. Vu, T. Grunwald, T. Bergs, Modeling of thermo‐viscoelastic material behavior 
of glass over a wide temperature range in glass compression molding, J Am Ceram Soc 103 
(2020) 2791–2807. 

[26] H. Kreilkamp, J.-H. Staasmeyer, L. Niendorf, The Future of Glass Optics Replication, Optik & 
Photonik 11 (2016) 28–31. 

[27] A.T. Vu, A.N. Vu, G. Liu, T. Grunwald, O. Dambon, F. Klocke, T. Bergs, Experimental 
investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared 
thermography, J Am Ceram Soc 102 (2019) 2116–2134. 

[28] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, in: Advances in Neural Information Processing Systems, Curran Associates, 
Inc, 2012. 

[29] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: A Deep 
Convolutional Activation Feature for Generic Visual Recognition, in: Proceedings of the 31st 
International Conference on Machine Learning, PMLR, Bejing, China, 2014, pp. 647–655. 

[30] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network Dissection: Quantifying 
Interpretability of Deep Visual Representations, 2017. 

[31] B. Neyshabur, H. Sedghi, C. Zhang, What is being transferred in transfer learning?, in: Advances 
in Neural Information Processing Systems, Curran Associates, Inc, 2020, pp. 512–523. 

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical 
image database, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, 
Miami, FL, IEEE, Piscataway, NJ, 2009, pp. 248–255. 

[33] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization, J. Mach. Learn. Res. 18 (2018) 1–52. 

[34] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, CoRR 
abs/1412.6980 (2015). 

[35] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Physics-Informed Data-Driven Models 
for Predicting Time- and Temperature-Dependent Viscoelastic Material Behaviors of Optical 
Glasses, SSRN Journal (2021). https://doi.org/10.2139/SSRN.3822865. 

[36] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive 
modeling of contact heat transfer, International Journal of Heat and Mass Transfer 174 (2021) 
121300. 

[37] Y. Yao, L. Rosasco, A. Caponnetto, On Early Stopping in Gradient Descent Learning, Constr 
Approx 26 (2007) 289–315. 

[38] S.S. Alahmari, D.B. Goldgof, P.R. Mouton, L.O. Hall, Challenges for the Repeatability of Deep 
Learning Models, IEEE Access 8 (2020) 211860–211868. 

Key Engineering Materials Vol. 926 2321


