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Abstract. Despite its promising advantages, the application of directed energy deposition (DED) to 
produce large metal parts is hindered by challenges inherent to the process. Undesired residual 
stresses, distortions and heterogeneous material properties mainly originate from a part’s thermal 

history. Fast part-scale thermal models therefore facilitate improved applicability of DED by enabling 
the prediction and mitigation of these unwanted effects. In this work, the efficiency of a discontinuous 
Galerkin-based thermal model with heat input by hot element addition, is evaluated and improved to 
allow such fast simulations. It is found that the model permits the use of a coarse discretization around 
the heat source, which significantly reduces simulation time while maintaining accurate solutions. It 
is also shown that the model naturally facilitates the use of local time stepping, which can 
considerably improve the efficiency of thermal additive manufacturing simulations. 

Introduction 
Additive manufacturing (AM) of large metal parts using directed energy deposition (DED) is a 
promising technique that is becoming more and more competitive with conventional manufacturing 
methods as casting, forging or machining [1]. Despite its potential, DED still faces challenges. These 
include undesired residual stresses, distortions and non-uniform and anisotropic material properties 
[2]. The origin of these phenomena lies in the high local heat input of the process and the resulting 
thermal history of the part [3]. A good understanding of the thermal history can therefore aid in 
predicting and resolving such unwanted effects. This indicates the need for fast part-scale thermal 
models to facilitate enhancing the applicability of DED. 

The speed of such models can be improved by employing simplified heat input models. Prescribed 
temperature heat input models remove both the necessity of solving the temperature field around the 
heat source and the requirement of using a refined mesh in this region, as is the case for the 
conventionally applied heat input by moving heat flux distributions [4]. Correctly capturing a 
specified heat input by prescribed temperature heat input models in the commonly used finite element 
method (FEM) is however difficult [5]. To overcome this issue, the authors have developed a 
discontinuous Galerkin (DG) based thermal model with heat input by hot element addition [5]. It has 
been demonstrated that this framework was able to accurately calculate the thermal response of a 
large metal AM build [5]. 

The main objective of this work is to show that the DGFEM framework developed in [5] easily 
allows further speedup of AM thermal simulations. The first contribution is to show that it enables 
the use of coarse meshes in the deposition zone to yield fast yet accurate simulations. The second 
contribution is to show that it can naturally accommodate local timestepping (LTS). This increases 
computational efficiency by allowing different regions in the model to advance in time with different 
(larger) step sizes. Recent implementations of LTS in AM FE-simulations highlight its potential to 
speed up such simulations, but also show that these FE-implementations require additional effort to 
facilitate communication between the different regions [6, 7].  
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The outline of this paper is as follows. In the Methodology section, first the DGFEM framework 
for thermal simulation of AM will be briefly explained, followed by the concept and implementation 
aspects of local time-stepping. In the section Results and Discussion, two sets of results to highlight 
the potential of the developed framework for thermal simulation of large-scale metal AM will be 
presented and discussed. 

Methodology 
Discontinuous Galerkin FEM. The temperature evolution of a material point is governed by the 

transient heat equation, which can be written as 

       𝐪 = −𝜅𝛁𝑇, 
𝜌𝑐p𝑇̇ = −𝛁 ⋅ 𝐪.  

(1) 

Here, 𝑇̇, 𝑇 and 𝐪 denote the temperature rate, temperature and heat flux vector, respectively, and 𝜌, 
𝑐p and 𝜅 denote the material’s density, specific heat capacity and thermal conductivity, respectively. 
Eq. 1 can be spatially discretized using the DGFEM as [5] 

          𝐌𝑖𝐪𝑖,𝑘 = 𝜅𝑖 𝐒𝑖,𝑘𝐓𝑖 − 𝜅𝑖  ∑ [𝑐qT,𝑓
𝑖𝑖 𝐆𝑘,𝑓

𝑖𝑖 𝐓𝑖 + 𝑐qT,𝑓
𝑖𝑗

𝐆𝑘,𝑓
𝑖𝑗

𝐓𝑗𝑓
]

𝑛f,𝑖
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𝜌𝑖𝑐p,𝑖𝐌𝑖𝐓̇𝑖    = ∑ (𝐒𝑖,𝑘𝐪𝑖,𝑘 − ∑ [𝑐Tq,𝑓
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(2) 

Here, 𝐌𝑖, 𝐒𝑖,𝑘, 𝐆𝑘,𝑓
𝑖𝑖 , 𝐆𝑘,𝑓

𝑖𝑗 , 𝐋𝑓
𝑖𝑖 and 𝐋𝑓

𝑖𝑗 are element matrices depending on the element’s interpolation 
order and shape. In this work, linear interpolation is used for both heat flux and temperature rate. 𝐓̇𝑖, 
𝐓𝑖 and 𝐪𝑖,𝑘 are the nodal temperature rates, temperatures and heat flux components of element 𝑖, 
respectively. 𝑛f,𝑖 denotes the number of faces of the element. 𝜌𝑖, 𝑐p,𝑖 and κ𝑖 are the element’s average 

density, specific heat capacity and thermal conductivity, respectively. These material properties may 
be temperature-dependent. 

 
a) FEM 

 
a) LTS without step size rounding and using interpolation 

 
b) DGFEM 

 
b) LTS with step size rounding and no explicit interpolation 

Figure 1: Prescribed 
temperature heat input models 

Figure 2: Schematic overview of LTS procedures 
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In a DGFEM spatial discretization, elements do not share nodes. At every spatial point in a mesh, 
there may thus exist multiple nodes. Inter-element communication is established using numerical 
fluxes through element faces 𝑓. These fluxes are represented by the terms between square brackets in 
Eq. 2. Within these terms, nodal quantities with a subscript 𝑗𝑓 belong to the neighboring element 
adjacent to face f. Next to inter-element communication, numerical fluxes can be used to enforce 
boundary conditions. The type of flux is determined by the choice of the flux parameters 𝑐qT, 𝑐Tq and 
𝑐TT. For a detailed overview of the possible choices of these parameters, the reader is referred to [5]. 

The semidiscrete formulation in Eq. 2 is explicit, so results can be evaluated on an element-by-
element basis. This is favorable for additive manufacturing simulations, as it easily allows to perform 
calculations for active elements only. To retain the explicit nature of Eq. 2 also after temporal 
discretization, a forward-Euler time-stepping scheme is used to advance the solution from time step 
𝑛 to 𝑛 + 1: 

𝐓𝑖
(𝑛+1)

= 𝐓𝑖
(𝑛)

+ Δ𝑡𝐓̇𝑖
(𝑛)

.  (3) 

Heat input modelling. Heat input modelling and element activation are combined by depositing 
elements at elevated temperature [5]. To ensure the heat input by a deposited element equals the 
process heat, its heat capacity can be enhanced according to 

𝑐p
∗ =

𝑄

𝐴
−∫ 𝜌(𝑇)𝑐P(𝑇)

𝑇s
𝑇0

d𝑇

∫ 𝜌(𝑇)
𝑇d

𝑇s
d𝑇

 ,  
(4) 

in between the deposition (𝑇d) and solidus (𝑇𝑠) temperature [5]. Here, 𝑄 is the heat input per unit bead 
length, 𝐴 is the bead’s cross sectional area and 𝑇0 the initial substrate temperature. After cooling 
below solidus temperature, the heat capacity is reset to the physical value 𝑐p(𝑇) again. This heat input 
method cannot readily be used in a regular FEM model due interpolation errors resulting from shared 
nodes at element interfaces, as shown in Fig. 1. 

Implementation. The explicit DGFEM formulation as given in Eq. 2-3 allows heat fluxes and 
temperatures to be calculated in a loop over active elements, while extracting the necessary results of 
adjacent elements to calculate the numerical fluxes. As such looping and indexing operations are 
inefficient in MATLAB, global sparse system matrices are set up at the start of a simulation instead. 
Nodal heat fluxes and temperature rates can then be calculated at once for all elements, according to 

𝐪𝑘 = 𝜿 ∘ (𝐂qT,𝑘𝐓),  

  𝐓̇ =
𝟏

𝝆∘𝒄p
∘ (∑ 𝐂Tq,𝑘𝐪𝑘

 
𝑘∈(𝑥,𝑦,𝑧) + 𝐂TT𝐓). 

(5) 

In Eq. 5, the symbol ∘ denotes element-wise multiplication. The 𝑛dof  ×  1 vectors 𝐪𝑘, 𝐓 and 𝐓̇ 
contain the nodal heat fluxes in 𝑘-direction, temperatures and temperature rates of all elements, 
respectively. In the 𝑛dof  ×  1 vectors 𝜿, 𝝆 and 𝒄p the element average thermal conductivities, 
densities and specific heat values, respectively, are repeated to match the number of nodes in each 
element. Non-active elements are handled by setting to zero the entries of rows in 𝐂qT,𝑘, 𝐂Tq,𝑘 and 
𝐂TT corresponding to these elements. A sparse diagonal Boolean pre-multiplication matrix is 
employed for this purpose.  

Local time-stepping. The time step in the explicit time integration scheme in Eq. 3 must satisfy 
the Courant-Friedrich-Lewy (CFL) condition to ensure numerical stability. This condition can be 
evaluated as [8] 

Δ𝑡 ≤ min
𝑖

(Δ𝑡𝑖), Δ𝑡𝑖 = 𝐶 min
𝑘,𝑇

(
1

𝛼𝑖(𝑇)
(Δ𝑥𝑖,𝑘)

2
), 𝑘 ∈ (𝑥, 𝑦, 𝑧).  (6) 

Here, Δ𝑥𝑖,𝑘 is the element size of element 𝑖 in 𝑘-direction, 𝛼 = 𝜅/(𝜌𝑐p) is the thermal diffusivity and 
𝐶 is a constant of order 1 [8]. Eq. 6 implies that the allowable time step size is determined by the 
smallest element in the mesh.  
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If there are only a few small elements, the condition in Eq. 6 has a detrimental effect on the overall 
solution time. This can be alleviated by employing local time-stepping. LTS schemes allow different 
time steps in different parts of a model. DGFEM readily allows each element to step with its own 
stable time step due to the fully explicit discretization (Eq. 2-3) and the natural method for inter-
element communication through numerical fluxes.  

This concept of LTS is shown schematically in Fig. 2a. In every simulation step, the elements with 
the smallest accumulated time advance one time step. This is repeated until all elements reach the 
final time. In case information is required from a neighboring element that is not at the same time 
level, this information is evaluated as function of the neighbor’s solution at its previous and/ or future 
time level.  

In this work, it is chosen to group elements according to rounded step sizes, with each element’s 

stable step size being rounded down to the nearest integer power of two [9], and use linear 
interpolation to evaluate data of neighboring elements. This facilitates periodic synchronization of 
the solution and simplifies the implementation of the LTS scheme as follows: 

Consider that from an element 𝑗 that has stepped from 𝑡𝑗
(𝑚) to 𝑡𝑗

(𝑚+1), the temperature 𝐓̃𝑗
(𝑛+1) at 

𝑡𝑖
(𝑛+1) is required for calculations in a neighboring element 𝑖. This temperature can be linearly 

interpolated as: 

𝐓̃𝑗
(𝑛+1)

= 𝐓𝑗
(𝑚)

+ 𝑤𝑖(𝐓𝑗
(𝑚+1)

− 𝐓𝑗
(𝑚)

) , 𝑤𝑖 =
𝑡𝑖

(𝑛+1)
−𝑡𝑗

(𝑚)

𝑡𝑗
(𝑚+1)

−𝑡𝑗
(𝑚) =

𝑡𝑖
(𝑛+1)

−𝑡𝑗
(𝑚)

Δ𝑡𝑗
.  

 
(7) 

By using Eq. 3 and noting that the term 𝑡𝑖
(𝑛+1)

− 𝑡𝑗
(𝑚) in Eq. 7 always equals an integer multiple 𝑛 of 

Δ𝑡𝑖 for rounded time step sizes, the expression for 𝐓̃𝑗
(𝑛+1) is written as 

𝐓̃𝑗
(𝑛+1)

= 𝐓𝑗
(𝑚)

+ 𝑛
Δ𝑡𝑖

Δ𝑡𝑗
Δ𝑡𝑗𝐓̇𝑗

(𝑚)
= 𝐓𝑗

(𝑚)
+ 𝑛Δ𝑡𝑖𝐓̇𝑗

(𝑚)
.  

 
(8) 

As a result, no explicit interpolation is required if in all simulation steps the temperature of all 
elements is incremented by an amount Δ𝑡 (Eq. 6) times their last-calculated temperature rate. Element 
temperatures are thus updated by cheap addition operations in every simulation step, as with global 
time-stepping (GTS), whereas the expensive calculation of heat fluxes and temperature rates is only 
performed for element groups that require an update, as in LTS. The resulting LTS scheme is shown 
in Fig. 2b.  

The validity of using LTS in combination with heat input by hot element addition was confirmed 
by comparing hot element addition onto a one-dimensional rod with non-homogeneous element sizes, 
to an analytical solution alike the validation performed in [5]. Excellent agreement with the analytical 
solution was obtained with both GTS and LTS.  

Results and Discussion 
Speedup by mesh coarsening  of deposited elements. In this section, the effect of the mesh size 

of deposited elements on the temperature evolution is investigated. This provides insight into the 
behavior of the heat input model under changes in mesh size. To this end, the deposition of a 
150×5×8 mm3 four layer straight thin wall on top of a 150×60×12 mm3 substrate will be simulated. 
Symmetry allows only half of the geometry to be modelled. Four different mesh geometries are 
considered, as shown in Fig. 3. In the most refined mesh, the cross section of a wall layer is modelled 
with 4x4 elements. In the most coarse mesh, the cross section of a layer is modelled with a single 
element. The length of the wall elements is equal to 2.083 mm in all simulations.  

Process parameters and boundary conditions are taken equal to those in [5, 10]. The process heat 
input is 270 J/mm, the deposition speed is 8.33 mm/s. Heat is lost to the surrounding air at 25°C 
through free convection (h=5.7 W/(m2K)) and radiation (ε=0.2). Heat is lost to the build plate at 25°C 

through forced convection (h=300 W/(m2K)). The symmetry face is fully isolated. Temperature-
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dependent material properties for S355 [5] are used. For these examples, the interlayer time is set to 
60 s. Elements are deposited at 2000°C with an enhanced heat capacity of 4538 J/(kgK) to match the 
process heat [5].  

The temperature evolution of three probe points, along with the temperature error, is depicted in 
Fig. 4. The results of the most refined mesh are taken as reference for the error calculations. It is seen 
that the overall evolution of the temperature field is the same for all four mesh geometries in both 
trend and magnitude. For probe location 1 in the substrate, the maximum error is 1.1°C (0.8%) for 
the coarsest mesh. This indicates that despite the large size of the deposited elements, the process heat 
input is captured correctly.  

The largest errors occur for the coarsest mesh at temperature peaks in the deposited area, with at 
most 116.5°C (11.8%) for probe location 2 and 75.3°C (8.15%) for probe location 3. Besides peak 
temperatures, cooling rates between 800°C and 500°C mainly determine the microstructure of steels 

 
a) Cross section of layer meshed with 4x4 elements 

 
b) Cross section of layer meshed with 3x3 elements 

 
c) Cross section of layer meshed with 2x2 elements 

 
d) Cross section of layer meshed with 1x1 elements 

Figure 3: Mesh geometries used to evaluate thermal histories of the short thin wall build 

 

 
a) Probe location 1 (75, 25, 6) 

 
b) Probe location 2 (75, 1.25, 12) 

 
c) Probe location 3 (75, 1.25, 17) 

Figure 4: Thermal histories and temperature errors (with respect to finest discretization) evaluated 
at different locations of the short thin wall build for different mesh geometries 
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[11]. These cooling rates agree very well for both the coarsest and finest mesh, with relative errors 
below 1%.   

The runtimes for the 4 simulations are given in Table 1. All simulations in this work are performed 
on 2 cores of an Intel® Xeon® Gold 3248R CPU with a clock speed of 3.0 GHz. The runtime has 
reduced by 96% as a result of coarsening the mesh in the wall. The reason for this is twofold: on one 
hand the problem size is reduced as the number of elements is reduced, on the other hand the 
allowable simulation time step size increases due to the increasing element size.  

The good representation of the temperature profiles and the fast runtime of the coarsest mesh 
shows that the DGFEM with heat input through hot element addition can very well be used for 
optimizing the overall thermal history of the AM process. The good prediction of cooling rates 
between 800°C and 500°C for the coarsest mesh suggests that an insight into material properties can 
be obtained in a fast way, but experimental validation is required to determine the effect of errors in 
peak temperature on these results. 

Speedup by local time-stepping. It was 
reasoned in the Local time-stepping section that 
the presence of a few small elements in the mesh 
can have a detrimental effect on the simulation 
runtime. This will be illustrated in this section by 
considering three models: 1) the wall build with 
1x1 elements in a layer’s cross-section (Fig. 3d), 
2) the wall build with 4x4 elements in a layer’s 

cross-section (Fig. 3a) and 3) a square plate upon 
which five thin-walled cylinders are deposited 
(Fig. 5). For each geometry, the distribution of 
element step sizes is shown in Fig. 6. A comparison of the simulation runtimes with and without LTS 
is provided in Fig. 7. Timing results are obtained during the first 5000 simulation steps for each model 
and are averaged over 3 runs. For the cylinder build, process and material parameters and boundary 
conditions were taken identical to those listed in the previous section.  

The achieved speedup versus the theoretically possible speedup is shown in Table 2. The achieved 
speedup is calculated by comparing the time spent on updating the heat fluxes and temperature rates 
between simulations with and without LTS. The theoretical speedup is calculated as 

𝑠th = 100% × ∑ (𝑛𝑔
Δ𝑡max

Δ𝑡min
 )𝑔   / ∑ (𝑛𝑔

Δ𝑡max

Δ𝑡𝑔
 )𝑔 ,       (9) 

where Δ𝑡min and Δ𝑡max denote the minimum and maximum stable step size in the model, 
respectively, Δ𝑡𝑔 is the stable step size of element group 𝑔 and 𝑛𝑔 is the number of elements in that 
group. It is assumed here that the computational costs to perform the calculations in Eq. 2, depend 
linearly on the number of elements to be updated. Evaluating the values in Table 2 and the histograms 
in Fig. 6 shows that the largest theoretical speedup is indeed possible for models having a small 
number of elements with a small stable timestep.  

Table 1: Thermal simulation runtimes for 
various mesh sizes (using GTS) 

Table 2: Theoretical and realized speedups for 
different models (based on 5000 simulation steps) 

Cross-section 
mesh 

Step size 
Δ𝑡 [s] 

Number of 
elements 

Runtime 

4x4 2-11 11160 2h 27 m 
3x3 2-10 7992 0h 53 m 
2x2 2-9 4464 0h 16 m 
1x1 2-8 2736 0h 6   m 

 

Model Theoretical 
speedup 

(Based on total 
element count) 

Theoretical speedup 
(Based on element 
count at simulation 

start) 

Realized 
speedup 

1 160.0% 156.3% 118.7% 
2 153.9% 246.9% 154.0% 
3 1379.9% 1543.0% 174.2% 

 

 
 

Figure 5: Mesh for model 3 
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a) Model 1 

 
b) Model 2 

 
c) Model 3 

Figure 6: Histograms of (rounded) element stable step sizes for three different models 

 
a) Model 1 

 
b) Model 2 

 
c) Model 3 

Figure 7: Runtime analysis for three different models. Operations: (1) Element activation, (2) 
Material parameter evaluation, (3) Heat flux and temperature rate calculations, Eq. 2, (4) 

Temperature updates, as in Eq. 3. 

In the Local time-stepping section, it was motivated that a simple implementation of LTS can be 
formulated if the temperatures of all elements are updated every step. Temperature updates then take 
place irrespective of whether or not the (interpolated) temperatures are required for calculations. Fig. 
7 shows that updating the temperature field takes significantly less time than calculating the nodal 
heat fluxes and temperature rates. This justifies the current implementation. 

Even though employing LTS in the current MATLAB model improves simulation efficiency, the 
achieved speedups do not approach the estimated values. Updates of individual groups were found to 
take approximately the same time, irrespective of their element counts. This is caused by the assembly 
of the system matrices and the way MATLAB handles sparse multiplications. For each separate group 
𝑔 with 𝑛dof,𝑔 nodal degrees of  freedom, the system matrices have size 𝑛dof,𝑔 × 𝑛dof. The column 
size 𝑛dof is equal for all groups. The computational complexity of sparse multiplications in MATLAB 
is proportional to this column size [12]. This explains the observed timings. The current calculation 
routine thus does not scale linearly with the number of updated elements and hence cannot yet utilize 
the full potential of LTS. 

Conclusion and Outlook 
From the comparison of the thermal histories resulting from different mesh geometries for the thin 

wall build, it was shown that increasing the elements size in the deposition area does not significantly 
affect the thermal history, while significantly reducing computational time. Employing DGFEM in 
combination with heat input by hot element addition thus allows fast yet accurate thermal simulation 
of the DED process even when using a coarse mesh for the deposited material.  

DGFEM also allows a straightforward implementation of local timestepping, which was 
theoretically shown to enable substantial computational savings for realistic AM problems. Even 
though the current MATLAB implementation of the simulation framework is not able to reach the 
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estimated speedups, preliminary results already indicate the potential for LTS to reduce the overall 
computational time of DED simulations. Based on the results of this work, it is expected that a further 
increase in efficiency can be realized if the thermal solver is executed as a compiled and optimized 
program that avoids the current use of global system matrices. 

Altogether, it is concluded that the DGFEM with heat input by hot element addition is a promising 
alternative to conventional FEM models for simulating the AM process of large metal parts.  
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