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Abstract. Additive Manufacturing (AM) using Powder-Bed Fusion Laser-Beam (PBF-LB) has great

potential; however, it has challenges due to its sensitivity to the process parameters [1]. The avail-

ability of big data generated in AM facilitates the employment of Machine Learning (ML) tools to

understand the process and have a predictive control over the production. An intelligent system like

this can thus reduce material wastage and energy cost while increasing a plant’s product quality and

throughput. Time-series summary statistics (like mean and variance) can discard valuable discrimina-

tory signatures embedded in raw sensor data. Therefore, special ML time-series classification (TSC)

tools that can extract and utilise these signatures from the raw data are much more effective for a task

like porosity prediction [1]. However, the data employed in [1] pertains to products with artificially

designed pores or gaps. This study focuses on naturally occurring pores, rarer, and evaluates k-Nearest
Neighbour (k-NN) with Dynamic Time Warping (DTW) over real-world manufacturing data to clas-

sify the porosity of individual raster scans. We believe that natural pores have more diverse signatures

than artificial pores, as each pore varies in characteristics (like size and morphology).

Introduction

AM creates a product layer-by-layer using a 3-D Computer-Aided Design (CAD) file, unlike tradi-

tional subtractive processes, which creates the final product by removing excess material from a larger

block. The onset of industrial revolution 4.0 drove massive research in AM. The gain in popularity of

AM from academia and industry is due to its unique advantages over traditional manufacturing pro-

cesses, like cheaper and accelerated prototyping, design flexibility, and environmental benefits [2].

Nevertheless, the current AM technology has its own challenges. For example, lack of reproducibil-

ity and variability in product’s quality even in the same build remains a significant challenge in the

widespread adoption of the technology [3].

The idea is to address the challenges in AM using ML techniques over its production data. Suc-

cessful applications of ML is seen in the literature for predicting porosity with time-series pyrometer

data as its input [1]. Similar to the study, we employ an AconityMINI 3D printer5 (shown in Fig. 1).

It is a Powder-Bed Fusion (PBF) system that employs the Selective Laser Melting (SLM) technique.

Powder-Bed Fusion Laser-Beam (PBF-LB) is an AM process that operates on the same funda-

mental principle of additively forming parts, layer upon layer, by depositing the powder and melting

it. The process starts with designing the part and creating a 3-dimensional (3D) CAD file, then sliced

into several 2-dimensional (2D) distinct layers. For each layer, first, the powder is fed onto the build

plate, and then given the path present in the 2D file of that layer, a scanner scans the heat source

(a laser beam in our case, therefore, PBF-LB) onto the powder bed. The laser melts the powder in its

track, which later solidifies upon cooling. Each layer is then sequentially fused with the previous layer.

The cycle of feeding the powder on the build plate and then melting and fusing it with the previous

5https://aconity3d.com/products/aconity-mini/
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Fig. 1: Picture of the metal additive manufacturing AconityMini 3D printer [1].

layer continues until all the layers are built, therefore, creating the final product. The entire process

happens in a chamber filled with an inert gas like argon. Fig. 2 illustrates the process of PBF-LB of

AconityMINI.

(a) (b)

Fig. 2: (a) Block layout of AconityMini’s PBF-LBmanufacturing process, and (b) the laser scan melt-

ing the powder and leaving behind a solidified metal trace, and the two in-situ pyrometers capturing

the melt-pool temperature [1].

The PBF-LB process reduces material wastage as the un-melted powder can be recycled for a

later build. It also provides excellent active customisation, thus eliminating fixed designs. Further-

more, PBF-LB gives the flexibility of combining various materials like glass, metals, and alloys [2].

Nevertheless, PBF-LB has its disadvantages. It is susceptible to process parameters, and having a reli-

able set of build parameters is vital for better product quality [4]. In addition, the print process itself is

relatively slow and uses high energy, and the built products need post-processing, which further adds

to the time and cost [2].

On the positive side, AM produces vast amounts of data captured through in-situ sensors and

quality measurement techniques. Having such an abundance of process data provides an excellent

opportunity to employ ML to mine patterns and information. The discovered knowledge can then be

utilised to address the challenges in the PBF-LB process and predict the product’s physical properties

[5, 6, 7, 8].
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Fig. 3: A slice from the �-CT scan representing a layer of NiTi block printed with 60micron thickness.

Data

We built a batch of 10 mm� 10 mm� 10 mm Nickel-Titanium (NiTi) metal blocks using the Aconi-

tyMINI system with 30, 60, and 90 microns layer thicknesses. These blocks were printed without any

designed pores or cavities, and therefore any pores in the blocks were naturally generated from the

process (see Fig. 3).

Two in-situ pyrometers measure the reflected light from the melt-pool area by KLEIBER Infrared

GmbH6, which detects the heat emission light in the range of 1500 to 1700 nm, representing the melt-

pool temperature. The light is split into two paths through optical filters and transmitted via optical

fibre cables to the pyrometers. Similar to the study byMahato et al. [1], the scanner and the pyrometers

are configured to cover x and y values (for each layer) in the range of 0 to 32,768 bit covering an area

of 400�400 mm, which results in a calibration value of 81.92 bit/mm. In addition, the frequency of

the sensors is set to 100 kHz.

Each layer’s pyrometer data is divided into individual raster scans (see Fig. 4a). We then truncate the

data around a large visible pore to eliminate noise and magnify the patterns present in the data. The

raster scans that pass through one of our located large pores are labelled as porous. Furthermore, the

rest of the raster scans are carefully labelled as non-porous only if they do not pass through any visible

pore. The class distribution of the resultant dataset is illustrated in Fig. 4b, where 0 and 1 correspond to

non-porous and porous samples, respectively. The negative class (i.e. 0) contains 88 samples, and the

positive class (i.e. 1) contains 53 samples, which results in a slight imbalance in the class distribution

in the dataset.

k-Nearest Neighbour

The data from the sensor are inherently a time-series. Our idea is to employ the raw time-series data

because summary time-series statistics (like mean and variation) can potentially lose informative dis-

criminatory signatures embedded in them [9, 10]. Furthermore, tabularMLmodels like Decision Trees

treat each vector in the time-series independently; hence, it is necessary to employ time-seriesML tools

that consider the sequential information of the series.

Mahato et al. [1] use k-NN with DTW as their TSC model for the task of pore vs non-pore clas-

sification task in their study. For consistency, we employ the same architecture in our study but for

naturally occurring pores.

6https://www.kleiberinfrared.com/index.php/en.html
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(a) (b)

Fig. 4: (a): (left) Pyrometer data from a layer of an AM Ni-Ti block with natural pores; a single raster

scan is then highlighted. (b): Sample size of each class in the dataset, 0 is non-porous samples, and 1

is porous samples.

When it comes to classification or regression, Nearest Neighbours (NN) searching algorithms are

found to be popular in ML literature with successful applications in various fields due to their sim-

plicity and adaptability [11]. They are based on the assumption that similar samples are closer to each

other than unlike samples in a d-dimensional space. NN algorithms render the versatility to formu-

late or leverage existing distance measures to compute the “nearness” of two samples. In addition,

NN algorithms provide proof of their predictions by showcasing the located neighbours, making the

algorithms interpretable [11].

Given a set of n points in a d-dimensional space, X � Ed, and given a query point q 2 Ed,

the idea is to extract a set K of k points in X that has minimum distance to q. First, the NNs are

fetched by computing the similarity or distance between a query (a newly laid raster scan) and the

set of training samples (previously laid and labelled raster scans) using the measure of choice (like

DTW). Then the algorithm assigns the most frequent class in the query’s neighbourhood (consisting of

k-closest neighbour) to the query. Hence, distance or similarity measure choice is crucial as it directly

corresponds to the model’s performance.

Dynamic Time Warping. When computing distance between two time-series data, Euclidean

distance might not be the best metric to employ. Firstly, Euclidean distance needs time-series data

to be of equal sizes; consequently, it fails when the data is of unequal lengths. Secondly, Euclidean

distance computes the distance between two time-series datum by linearly matching their data points

(Fig. 5(a)). Therefore, even if two similar time-series data are only slightly displaced in the time-

axis, the Euclidean distance between them is considerable (Fig. 5(b)). The aforementioned problem is

illustrated in Fig. 5. DTW approaches this misalignment by giving us the flexibility of mapping the

data points in a non-linear manner (Fig. 5(c)) [1].

Fig. 5: (a) The two time-series are similar with no displacement on time-axis, therefore, Euclidean

distance is small. (b) The two similar time-series are displaced in time, hence, Euclidean distance is

large. (c) DTW non-linearly maps the two time-series in (b) [1].
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Let q and s be two time-series with sizes u and v respectively, and define �DTW (i; j) as the DTW
distance between q(1 : i) and s(1 : j), with the mapping path starting from (1; 1) to (i; j). Let the
notation Lp represent the norm of order p, and initial condition be �DTW (1; 1) = �Lp(q1; s1). Then,
recursively calculate �DTW (i; j) using Eq. 1; on completion, the minimum distance is at �DTW (u; v).

�DTW (i; j) = �Lp(qi; sj) +min

8><>:
�DTW (i� 1; j) insertion

�DTW (i� 1; j � 1) match

�DTW (i; j � 1) deletion

(1)

In short, DTW constructs a cost matrix and then determines the shortest path through the grid.

DTW algorithm is O(t1; t2) as it requires searching through the matrix, making the complexity O(t2)
in the time-series’ average length. This causes the DTW algorithm to be computationally expensive.

A global restraint like Sakoe-Chiba [12] is applied to prune unwanted deviation to obtain the optimal

path while improving the time and memory complexity of the algorithm.

Evaluation

We split the dataset described in the “Data” section into train and test sets of sizes 105 and 36, respec-

tively. For obtaining the best set of parameters of the k-NN-DTW model, we employ GridSearchCV

from the Scikit-learn7 library over a wide range of parameter settings. For the cross-validation mech-

anism, we employ RepeatedStratifiedKFold from Scikit-learn with the number of splits and repeats

both set to 5 (therefore, a total of 25 iterations). The system is only exposed to the train data for

hyper-parameter optimisation. Fig. 6 illustrates the model accuracies across the training instances (i.e.

iterations). Here, we see that the best parameters (k-Neighbours and Sakoe-Chiba radius of 2 and 1,

respectively) render a mean accuracy of the k-NN-DTW model of around 69% on training data.

Fig. 6: Accuracy scores of k-NN-DTW model trained with best set of parameters across cross-

validation folds over training data. Here, the mean cross-validated accuracy is around 69%.

Finally, we trained the model on training data supplied with the best parameters obtained in the

previous step and evaluated it on the held-out test data. As a result, the model predicts the classes of

7https://scikit-learn.org/stable/
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the held-out samples with an accuracy of 65%. Although the model is reasonably good in classifying

natural pores with an accuracy of 65%, the resulting accuracy is relatively poor than the artificial pores

model (92%) presented in the study [1]. The difference in performance is due to the classification task

over naturally occurring pores being more challenging than the artificially designed pores.

Conclusion and Future Work

In this paper, we examine the performance of the k-NN-DTWmodel over AM dataset of metal blocks

having natural pores. The following are our observations and our ideas for future work:

• In the study involving artificial cavities, k-NN-DTWachieves a high accuracy of 92%, but when

it comes to natural pores, the accuracy drops to 65%.

• As stated previously, each natural pore has distinct characteristics, area, and morphology, unlike

an artificial pore with fixed properties and well-defined shapes and forms. Therefore, if not ac-

companied by greater sample size for each category of the pore, such diversity has a detrimental

effect on the model’s performance for the prediction task.

• Most real-world data suffers from class imbalance, and so does AM datasets. Therefore, a more

robust approach needs to be examined that address this issue. The idea is to either collect more

data or use ML tools like SMOTE from the imbalanced-learn8 library to upsample the minority

class (i.e. porous) or use cost-sensitive learning, which gives higher weightage to the minority

class.

• To properly evaluate the models over the classification task on the imbalanced AM dataset, a

more robust metric like F1-score or ROC-AUC needs to be employed.
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