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Abstract. Due to their outstanding characteristics, additive manufacturing processes are attracting 
increasing industrial interest. Among these processes, laser metal deposition (LMD) is an innovative 
technology for the production of metal components. In order to create three-dimensional parts, wire 
or powder is deposited layer-wise onto a substrate. When wire is used as feedstock, major drawbacks 
of the powder-based process, such as the low material usage, contamination of the process cell with 
metal powder, and health or safety issues, can be overcome or even avoided. In addition, recent 
developments in laser optics allow for a coaxial wire feeding in the center of an annular laser beam. 
This eliminates the strong directional dependence of the process when feeding the wire laterally. 
However, wire-based LMD is highly sensitive to process disturbances, which impedes its broader 
industrial application. Since it is necessary to completely melt the fed wire to achieve a stable process, 
self-regulating effects such as overspray in powder-based LMD are not present.  

In contrast to the widely investigated thin walls, the build-up of multi-track solid structures poses 
a particular challenge. Therefore, process strategies for producing such solid structures are presented 
in this paper. The experiments were carried out using a laser processing head that enables coaxial 
wire feeding (CoaxPrinter, Precitec). By systematically varying the lateral overlap between adjacent 
weld beads, it was shown that an optimum exists at which minimum surface waviness is achieved. 
Based on this, defect-free multi-layer solid components could be generated in a reproducible manner. 
During the process, the melt pool temperature was evaluated using a pyrometer. Furthermore, a 
microscopic examination of the resulting parts was conducted. The results obtained show the need 
for process monitoring and control, for which a novel and holistic approach has been developed. 

Introduction 
Laser metal deposition (LMD) is an emerging additive manufacturing technology that enables 
significantly higher build rates than the widely used processes employing a powder bed. In LMD 
processes, powder or wire is continuously and locally fed to a substrate into a laser-induced molten 
pool. By repeating the application layer by layer, three-dimensional metal components can be 
produced. This offers great potential for applications in various industries, such as aerospace, tooling, 
oil and gas, and automotive [1]. Across these industries, stainless steels are among the most 
commonly used materials [2]. For the manufacturing of metal parts, the use of wire as feedstock offers 
several advantages over the use of powder. Using wire enables a material utilization of 100 % while 
avoiding hazardous effects of metal dust on the operator and the environment [3]. In wire-based LMD, 
the filler material is typically fed laterally to a Gaussian laser beam. This results in a strong directional 
dependency of the process, as the wire is fed from the front, the back, or the side, depending on the 
direction of movement [4]. However, recent developments of laser processing optics also allow for a 
directionally independent process by feeding the wire either in the center of several single beams [5–
8] or inside an annular laser beam [9–11]. Despite the advantage of directional independence, coaxial 
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wire-based LMD is highly sensitive to process disturbances, which impedes its broader industrial 
application. 

To achieve a stable process, precise tuning of the process parameters is required. Otherwise, the 
typical defect types as described by Motta et al. [10] occur. In the case of stubbing, wire fragments 
that have not been melted adhere to the substrate due to insufficient energy input. In contrast, in the 
case of dripping, droplets are formed at the end of the fed wire as a result of excessive energy input. 
Furthermore, the self-regulating effects due to overspray as described by Zhu et al. [12] and 
Donadello et al. [13] for powder-based LMD are not present since it is necessary to fully melt the fed 
wire. The expected or theoretical layer height must consequently be very close to the actual layer 
height to keep the distance between the laser processing head and the surface of the part constant 
during the build-up [14]. 

For thin-walled structures, which were most commonly studied in literature [15], an improper 
height adjustment can be self-compensated to a minor extent. If the height increment is too small, the 
laser beam is defocused more than the initial setpoint, which leads to a wider melt pool and thus to a 
reduced layer height due to the constant volume of the fed material. Likewise, if the height increment 
is too large, the melt pool is narrower, resulting in a greater layer height [16]. In contrast, this effect 
does not apply to the build-up of multi-track solid structures, which are crucial for the production of 
many industrially relevant components. With such solid structures, additional complexity is added 
since the lateral overlap of adjacent weld beads, the deposition pattern, and the increased heat 
accumulation in the part must also be considered. It should be noted that the directional independence 
of coaxial wire feeding offers a decisive advantage in the build-up of complex solid components since 
this requires frequent changes in the orientation of the tracks. 

Starting from the first layer, the lateral overlap of adjacent tracks is a crucial parameter for a stable 
build-up. The objective should be to achieve minimal waviness of the layer surface to enable defect-
free deposition of the subsequent layers. In this context, the term waviness must be distinguished 
from the term roughness, as irregularities in the order of magnitude of roughness only have a minor 
influence on the process. 

Various works investigated the deposition of multi-track layers as well as the subsequent build-up 
of solid structures. The degree of overlap commonly refers to the proportional width of one bead 
overlapped when the adjacent bead is deposited. For the coating of mild steel using Inconel 625 and 
Thermanite 2509, it was shown by Pajukoski et al. [17] that an insufficient degree of overlap (<50 %) 
produced excessive dilution, while a large degree of overlap (>60 %) resulted in high porosity. 
Budde et al. [18] employed hot-wire LMD for the cladding of AISI 316L with high carbon steel 
AISI 52100. The process parameters as well as the degree of overlap between the weld beads were 
varied, and the claddings were investigated using cross-sections. Pore-free parameter sets were 
determined, although these were associated with a high degree of dilution. Kelbassa et al. [19] 
established a process window for the deposition of Inconel 718 and Ti6Al4V wire employing a 
coaxial laser processing head. Different degrees of overlap were tested and the surface waviness was 
assessed via cross-sections. Subsequently, cuboids with eight layers were built up, where material 
accumulation at the edges occurred due to the chosen path strategy. A similar procedure was utilized 
by Madarieta-Churruca et al. [8] for the deposition of AISI 316L stainless steel. By using a proper 
layer height and adapted path strategies, multi-layer solid structures could be built up. 
Oliari et al. [20] investigated the degree of overlap for LMD with lateral wire feeding by depositing 
layers with three tracks each. In this study, alloy steel (42CrMo4) was used as substrate material and 
AISI H11 tool steel as feedstock. With the selected degree of overlap, parts with up to ten layers could 
be built. However, a detailed investigation of the degree of overlap proved to be difficult due to the 
small number of tracks. 

Furthermore, different models on the degree of overlap for multi-track wire and arc additive 
manufacturing (WAAM) have been established [21–25]. According to theory, a planar surface is 
obtained when the overlap area of two weld beads in a cross-section is equal to the area of the valley 
between the beads. However, it was shown that an ideally flat surface cannot be achieved [25]. In 
addition, the theoretically optimized distance between beads does not necessarily produce the lowest 
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possible waviness since other influences such as the energy input or the deposited material also affect 
the result. 

In the existing studies on the degree of overlap, only single cross-sections were used for estimating 
the resulting surface waviness. However, no detailed quantification of the waviness for wire-based 
LMD has been performed so far. In the work presented in this paper, an approach on how to select 
the degree of overlap for achieving a minimum surface waviness was investigated. Based on this, 
multi-track multi-layer parts are produced. Even if the process parameters are precisely tuned, 
instabilities may arise due to the sensitivity of wire-based LMD to disturbances. To compensate for 
these, a novel approach for an online monitoring system as well as for a multivariable closed-loop 
process control based on it is presented. 

Materials and Methods 
Materials. For the experiments, plates of austenitic stainless steel AISI 304 (100 mm×100 mm 
×10 mm) were used as substrate material. The plates were cleaned with isopropanol to remove 
existing contaminants. Stainless steel ER316LSi wire with a diameter of 1 mm served as feedstock 
material. The chemical compositions are given in Table 1. 

 
Table 1: Chemical composition of the wire and the substrate material (wt%) 

Element Cr Ni Mo Mn Si C P S Fe 

Wire 18.38 11.37 2.52 1.82 0.67 0.013 0.018 0.018 Bal. 

Substrate 17.0–19.0 8.0–11.0 – ≤2.0 ≤1.0 ≤0.07 ≤0.035 ≤0.03 Bal. 

 
Experimental Setup. The experimental setup is depicted in Figure 1. Laser radiation with a 

wavelength of 1030 nm was generated by a 4 kW disk laser (TruDisk 4001, TRUMPF GmbH & Co. 
KG, Ditzingen, Germany) operating in continuous wave (cw) mode. Through a 600 µm optical fiber, 
the radiation was transmitted to the laser processing head (CoaxPrinter, Precitec GmbH & Co. KG, 
Gaggenau, Germany). Here, the beam shaping took place, which allowed for coaxial feeding of the 
wire within an annular beam profile. Thus, a direction-independent LMD process was enabled. To 
provide the feedstock, an industrial wire feeding unit (DIX FDE-PN 100 L, DINSE GmbH, Hamburg, 
Germany) was used. The curvature of the wire, which was delivered in a coil, was compensated by a 
precisely adjusted two-plane wire straightening unit. The laser processing head was moved by a six-
axis industrial robot (KR 60, KUKA AG, Augsburg, Germany) with a maximum payload of 60 kg, 
which was actuated by a robotic control system (KR C4, KUKA AG, Augsburg, Germany). A 
pyrometer (METIS M322, Sensortherm GmbH, Steinbach, Germany) in one-color mode (sensitive 
in the range of 1.45 – 1.65 µm) with a temperature measurement range of 600 – 2300 °C was mounted 
to the laser processing head for a coaxial measurement of the melt pool temperature during the 
process. The calibration of the pyrometer to the surface temperature of the melt pool has been 
discussed in detail in previous work [26]. 
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Figure 1: Laser metal deposition process with coaxial wire feeding: (a) experimental setup; (b) schematic illustration of 

the process zone 

Experimental Procedure. To investigate the surface waviness of a single layer, 15 laterally 
overlapping weld beads were deposited in a zigzag pattern, as shown in Figure 2a. An interruption of 
the process between individual tracks was omitted to avoid influences of the initial transient phase on 
the bead geometry. The laser power was varied on the three levels 1200 W, 1600 W, and 2000 W. In 
each case, the remaining process parameters traverse speed and wire feed rate were adjusted based 
on preliminary studies so that a stable deposition was obtained for single-track beads. Thus, with a 
higher laser power, the other parameter values were also increased to avoid excessive heat input and 
the associated defect pattern of dripping [10]. The applied parameter sets denoted as A, B, and C are 
given in Table 2. During all experiments, a constant shielding gas flow (Argon) of 20 l/min was used. 
The focal position was set at −6 mm so that the focal point was below the surface of the substrate. 
This resulted in an outer and inner diameter of the ring-shaped laser spot of 2.75 mm and 1.50 mm, 
respectively. The measurement spot of the pyrometer was adjusted using the fiber optics so that an 
outer diameter of 2.4 mm and an inner diameter of 1.3 mm was obtained at this focal position, 
minimizing disturbances of the signal due to the fed wire [26]. 

 
Table 2: Process parameters for the deposition of a single layer with multiple tracks 

Varied parameters Unit 
Parameter set 

A B C 
Laser power 𝑃𝐿 W 1200 1600 2000 
Traverse speed 𝑣𝑡 m/min 1.0 1.3 1.5 
Wire feed rate 𝑣𝑤 m/min 1.1 1.2 1.3 

Fixed parameters   

Focal position 𝑓 mm −6 
Shielding gas flow l/min 20 

 
The width of a single bead together with the distance between the tracks determines the degree of 

overlap. As shown schematically in Figure 2b, the degree of overlap is defined as the lateral 
proportion of a bead that is overlapped during the deposition of the next bead [20]. However, since 
the overlap area in a cross-section also depends on the bead shape, the degree of overlap is not 
necessarily suitable for a comparison with literature values. Therefore, in the following, the distance 
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𝑑𝑡 between the center lines of adjacent beads, also denoted as track distance, will be used. For each 
parameter set, the track distance was reduced in steps of 0.1 mm, starting at a distance of 1.7 mm. At 
this maximum distance, significant valleys were still apparent between the beads. As soon as a 
significant increase in defects occurred due to the large overlap, the test sequence was terminated for 
the respective parameter set. 

    
Figure 2: (a) deposition pattern for a single layer; (b) Schematic visualization of laterally overlapping beads and their 

geometric parameters [23] 

Characterizations. The topography of the applied layers was measured using a 3D profilometer 
(VR-3100, Keyence Corporation, Osaka, Japan). Thermal distortions of the substrate plates caused 
by the process were compensated for in the included software. For the investigation of the surface 
waviness, a reference area with a width of 10 mm along the direction of the tracks was uniformly 
selected for each sample, as illustrated in Figure 3. Within this area, the standard deviation was 
computed over the z-coordinates of all included points, serving as a measure for the waviness. In each 
case, the outermost weld beads were not considered. Due to the high number of points within the 
considered areas, an objective and representative quantification of the waviness is enabled, which 
clearly distinguishes this procedure from previous works. An example for the analyzed region of the 
height profile is shown in Figure 3. 

    
Figure 3: Exemplary surface profile of a single layer containing the reference area with a width of 10 mm 

A laser scanning confocal microscope (VK-X 1000, Keyence Corporation, Osaka, Japan) was used 
to examine of the cross-sections and to determine the geometric features of the individual weld beads. 
Furthermore, a scanning electron microscope (JSM-IT200, JEOL Ltd., Akishima, Japan) with an 
integrated unit for energy dispersive X-ray spectroscopy (EDS) was employed to analyze the 
elemental composition of the built-up material. 
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Results and Discussion 
Distance between Weld Beads. Since the geometry of a single weld bead significantly influences 
the resulting surface characteristics at a given track distance, this should initially be considered 
separately. Figure 4 shows cross-sections of single beads for the three investigated parameter sets. 
Based on the respective geometry, the theoretically optimum track distance 𝑑̂𝑡 can be computed. 
Therefore, the track distance is set in such a way that the overlapping area and the area of the valley 
are equal (see Figure 2b) [23]. According to Shi et al. [16], for LMD with coaxial wire feeding, the 
geometry of a bead can be described by a circular arc in good approximation. This also holds true to 
the three parameter sets used in this study, as illustrated in Figure 4. Knowing the width 𝑤, the height 
ℎ and the radius 𝑅, the theoretically optimum track distance of two adjacent circular arc beads can be 
calculated as follows [23]: 

𝑑̂𝑡 =
1

2ℎ
(2𝑅2𝑎𝑟𝑐𝑠𝑖𝑛

𝑤

2𝑅
+ 𝑤ℎ − 𝑤𝑅) (1) 

This leads to optimum track distances of 1.73 mm, 1.78 mm, and 1.78 mm for parameter sets A, 
B, and C, respectively. 

  
Figure 4: Contour of a single bead approximated by a circular arc together with the geometric specifications for 

parameter sets A (a), B (b), and C (c) 

In practice, to achieve minimum waviness for a deposited layer, the set track distance must result 
in a minimum standard deviation 𝜎 of the z-coordinates for the measuring points within the reference 
area. Figure 5 shows the respective mean values and standard deviations obtained from the three test 
series conducted. 

For the mean values (cf. Figure 5a), which serve as a measure of the resulting layer height, a 
distinct trend is apparent, with the height of the deposited layer increasing as the spacing between the 
beads decreases. The exponential curve can be explained by the fact that with higher degrees of 
overlap, a further reduction in the distance between tracks also leads to a higher change in the 
overlapping area in the cross-section due to the convex geometry of the beads (see Figure 2b). Since 
the entire volume of the fed wire is deposited, this corresponds to a greater increase in the height. 

For parameter sets A and B, the standard deviations of the z-coordinates exhibit a minimum at a 
distance of 1.1 mm and 1.0 mm, respectively, while it increases for higher as well as for lower track 
distances. In relation to the respective bead widths, these values correspond to a degree of overlap of 
44 % and 39 %. The actual optimum track distance is thus considerably less than the theoretically 
calculated one. This is because various physical phenomena such as gravity, viscosity, and surface 
tension also influence the bead formation [25]. Due to the many uncertainties that have to be 
considered when modeling the optimum track distance, in practice, using the presented approach may 
be significantly more efficient. This clearly shows that, depending on the chosen parameter set, there 
is an optimum for the track distance at which the smoothest surface can be achieved.  In the 
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investigated parameter range resulting in a stable deposition, the standard deviation for large and 
small track distances was approximately twice as high as for the optimum track distance in each case. 

When investigating parameter set C, the test series was stopped prematurely at a track distance of 
1.3 mm due to frequent defects, resulting in only five samples. In this case, although the parameter 
set yielded a stable process and defect-free beads for single tracks, overheating occurred when 
depositing adjacent beads due to the high energy input. As a result, the contact between the wire and 
the workpiece was repeatedly interrupted, leading to frequent droplet formations. 

Since parameter set B exhibited the lowest waviness, it was selected for the further investigations. 
In addition, when using parameter set B a higher deposition rate was achieved than using parameter 
set A, which is preferable in terms of an economical process. 

  
Figure 5: Mean heights (a) and standard deviations (b) of the z-coordinates for samples resulting from the test series 

with parameter sets A, B, and C 

In Figure 6, the surface topographies of the samples obtained for the minimum (Figure 6a), the 
maximum (Figure 6b), and the optimum (Figure 6c) track distance when using parameter set B are 
displayed. For the minimum track distance, a gradual increase in the height is apparent in the initial 
region (left) due to the large overlap. At the maximum track distance, the valleys between the beads 
are clearly visible, while at the optimum track distance, the surface is comparably smooth and exhibits 
a uniform height. The resulting dilution will not be considered further in this work since the main 
focus is not on coating applications but on additively building up 3D structures. 
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Figure 6: Surface topographies of samples produced using parameter set B: (a) 0.6 mm track distance, (b) 1.7 mm track 

distance, (c) 1.0 mm track distance 

 
Deposition of Multi-track Multi-layer 3D Geometries. Using the determined optimal track 

distance of 1 mm for parameter set B, several cuboids were produced. The orientation of the layers 
was rotated by 90° in an alternating manner to avoid amplifying defects that might be present in the 
previous layers [8, 27]. Particularly with industrial robots, which are frequently deployed in LMD 
processes due to their high flexibility, the existing dynamic constraints must be considered. For 
example, sharp corners can only be traced precisely by stopping at the edge and accelerating again. 
Since the wire feed rate remains constant, there will be a material accumulation in this corner area. 
When building a cuboid using the chosen zigzag deposition pattern, this leads to a collapse in the 
center, as shown in Figure 7a. However, common robot controllers provide various interpolation 
methods to avoid such a full stop of the robot. When using a velocity criterion for the interpolation, 
falling edges developed after a few layers, see Figure 7b. 

Finally, a strategy in which 20 % of the corners in the zigzag pattern were interpolated, proved to 
be effective. With this approach, as shown in Figure 7c, stable walls of the cuboid and an 
approximately flat surface could be achieved. The cuboid consisted of 32 layers with a base area of 
50 mm×50 mm. In terms of the height increment after each layer, sound results were obtained for a 
value of 0.78 mm. This increment was slightly higher than the mean height of the first layer, which 
is related to the additionally deposited material resulting from the described path strategy at the 
corners. 

   
Figure 7: Built-up cuboids; (a) depression in the center, (b) falling edges, (c) defect-free build-up 

Figure 8 shows a cross-section of the generated cuboid depicted in Figure 7c, with certain areas 
magnified in the detailed views. At the transition to the substrate, there is only a small heat-affected 
zone, which indicates only minor damage to the substrate material due to the process. In the detailed 
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view on the upper right, the individual layers are clearly visible. Throughout the whole cross-section, 
a sound bonding of the individual layers can be seen, with no distinct pores apparent. However, some 
inclusions are clearly visible, as exemplarily illustrated in the detailed view on the left. It is assumed 
that these inclusions are oxide layers formed during the process, which remained in the component 
when a new layer was applied. This hypothesis is supported by an EDS analysis performed. While 
no oxygen was detected in the additively built-up material at point B, an oxygen content of 34.9 wt% 
was measured inside the inclusion at point A. In order to avoid the formation of such oxide layers and 
thus their remaining inside the component, further improvement of the local shielding gas coverage 
through an optimized nozzle should be considered. 

  
Figure 8: Cross-section of the multi-track multi-layer cuboid shown in Figure 7c together with various detailed views of 

relevant areas 

Evaluation of the Melt Pool Temperature during the Deposition. The pyrometer integrated 
into the laser processing head was used to measure the melt pool temperature 𝑇𝑚 during the build-up 
of the cuboid shown in Figure 7c. The obtained temperature curve is plotted in Figure 9. The sampling 
rate for the data acquisition was 47 Hz. To reduce noise, the signal was subsequently smoothed 
employing a lowpass filter with a passband frequency of 5 Hz. 

In the temperature curve, an increasing trend can be observed during the first 480 s approximately, 
corresponding to the first six layers, until the average temperature remains almost constant. This 
initial increase results from the increasing heat accumulation in the part [28]. The melt pool 
temperature thus serves as an indicator of the thermal energy within the part. The detailed view in 
Figure 9 shows the temperature curve during the deposition of the second and the third layer. In the 
signal, periodic oscillations are apparent. These oscillations result from the zigzag deposition pattern, 
with two successive passes within a short time occurring after each change of direction in the outer 
areas. Due to the limited cooling rate of the deposited material, this leads to peaks in the temperature 
signal. Moreover, the transition between the layers is clearly visible, as the average temperature level 
changes abruptly at this point. In summary, the temperature curve clearly shows that process-related 
irregularities occur during the build-up of solid components. If more pronounced, these can lead to 
defects in the part. Therefore, they should be compensated for through an adaptive process control. 
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Figure 9: Melt pool temperature during the build-up of a cuboid together with the detailed signal representing two 

layers 

A Novel Concept for Multivariable Process Control 
The investigations on the build-up of a solid cuboid show that despite the advantages of coaxial wire 
feeding, there are several process-related challenges. In particular, geometries more complex than the 
presented cuboid require a great deal of effort to find adequate process parameters. If the parameters 
are not precisely tuned, defects due to overheating or deviations between the actual and the theoretical 
layer height can occur. To reduce the effort for parameter studies and thus to further establish wire-
based LMD in industrial applications, an increased degree of automation is of crucial importance. For 
this reason, in-process monitoring and control are required for geometrically and structurally reliable 
components. It is therefore essential to obtain feedback from the process in real-time. Several process 
variables that can be measured online are feasible for this purpose. Of these, the melt pool temperature 
and the height of the applied layers are among the most relevant for process stability [29]. More 
significant deviations of these variables from the desired state inevitably lead to an unstable process 
and, consequently, to defective components. Both the melt pool temperature and the height of the part 
are virtually in all cases measured through optical methods, given that tactile measurements are 
impractical due to the high temperatures occurring in the process [30]. 

For monitoring the melt pool temperature in LMD processes, pyrometers as well as infrared (IR) 
cameras are suitable. Both sensors can be coupled into the beam path of the laser processing head. 
Thus, the freedom of movement is not restricted by additional external components, and direction-
independent data acquisition is possible. This has been used to successfully control the melt pool 
temperature [31–33] as well as the closely related melt pool geometry [34–36] in different LMD 
processes, whereby the laser power was used as the manipulated variable. 

For the height of the part and its topography, measurement systems based on laser triangulation or 
structured light projection are commonly used [14]. However, due to the directional dependency and 
the process emissions, online measurement is challenging, which is why measurements are usually 
performed after a layer has been applied. Thus, various layer-to-layer control systems have been 
developed employing such sensors [37–39]. Moreover, several authors have used laterally arranged 
CCD, CMOS, or IR cameras to detect the height of the bead or the part, respectively [40–42]. This 
method faces the challenge of accurately detecting the boundaries of the layer due to the intense 
illumination and fumes. 
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As was pointed out, an unstable process and thus defects can result from various causes that are 
independent of one another. To compensate for all significant disturbances, a simultaneous 
adjustment of different process parameters is desirable. Since there are considerable cross-couplings 
between the measured variables, several independent closed-loop controllers are not suitable in most 
cases. So far, there are only a few approaches for multivariable process control in LMD processes [40, 
43]. Particularly, in wire-based LMD, real-time multivariable control has not yet been implemented. 
This is primarily due to the fact that real-time measurements of the layer height are a major challenge. 
In the following, a novel concept for the data acquisition and subsequently a multivariable process 
control is presented. 

Direction-independent Monitoring in Real-time. A laser processing head with an annular beam 
profile is particularly suitable for monitoring wire-based LMD, since, in addition to a direction-
independent process, this also enables direction-independent measurements. Therefore, the system 
used in this work will be equipped with further sensor technology in addition to the existing 
pyrometer. 

To enable a highly accurate measurement of the layer height ℎ𝑝 in real-time, optical coherence 
tomography (OCT) represents a highly promising alternative to the existing approaches described 
above. This sensor technology based on low-coherence interferometry (LCI) is already established in 
several laser material processing applications [44, 45]. By splitting a coherent light beam, the relative 
distance between two reflecting surfaces can be determined based on the interference pattern of the 
reflected light beams [46]. The use of OCT for the height measurement in wire-based LMD offers 
several major advantages. On the one hand, interferometric measurements are not influenced by 
process-induced electromagnetic emissions [46]. On the other hand, by integrating the measurement 
principle into the laser processing head, a spatially lean solution is achieved that does not limit 
accessibility. Furthermore, a direction-independent measurement can be ensured with an annular 
beam profile by rotating the OCT spot using a scan system. 

In combination with an in-axis pyrometer or an in-axis IR camera, which both allow a direction-
independent measurement, an industrially applicable solution for the real-time acquisition of the part 
height and the melt pool temperature can thus be implemented. 

Multivariable Closed-loop Process Control. The presented process monitoring system can 
ultimately be used for a closed-loop multivariable process control. The proposed control architecture 
to be implemented in future work is displayed in Figure 10. In the control architecture, the melt pool 
temperature and the part height are the controlled variables. The laser power 𝑃𝐿 and the wire feed rate 
𝑣𝑤 are suited as the manipulated variables, as these significantly influence the melt pool temperature 
and the part height, respectively, and can be adjusted with a small time delay. With regard to the 
controller design, it is crucial to first determine a valid system model that maps the dynamic 
relationships between the input variables and the output variables, i.e., the manipulated variables and 
the controlled variables. In particular, it must be considered that significant cross-couplings are to be 
expected in the system. For example, a higher melt pool temperature can result in a broader and flatter 
melt pool, while the part height affects the focal position and thus the intensity of the laser radiation. 
These cross-couplings subsequently also have to be taken into account by the control algorithm. For 
this purpose, different approaches will be investigated, such as a decoupling structure in the 
controller, multivariable model predictive control (MPC), or machine learning approaches. With the 
described holistic control approach, a real-time multivariable control for wire-based LMD will be 
implemented for the first time, thus taking a significant step towards further establishing the process 
in industrial applications. 
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Figure 10: Architecture of the multivariable closed-loop process control with the LMD process as the controlled plant  

Conclusions 
In this study, process strategies for the defect-free build-up of solid metal parts by coaxial wire-based 
laser metal deposition were evaluated. As a key factor for the deposition of sound layers, the distance 
between adjacent weld beads was varied for different parameter sets. The produced samples were 
analyzed with respect to the resulting surface waviness. It was found that there is an optimum for the 
track distance, which deviates significantly from the theoretical optimum. This is because process-
related physical phenomena are not considered in the common model. Furthermore, the amount of 
energy introduced into the part must be carefully monitored compared to single-track beads to avoid 
defects resulting from overheating. The optimum track distance determined, together with a precise 
tuning of the traverse speed at corners and the height increment, enabled the production of solid 
cuboids. Based on the results obtained, it can be concluded that both the part height and the melt pool 
temperature are crucial for a stable process and thus defect-free parts. Therefore, a novel concept for 
process monitoring using optical coherence tomography and IR temperature measurements as well as 
for a multivariable process control was developed. This concept will be implemented in future work. 
The control system is intended to be applied to solid and thin-walled structures. In this context, in-
depth investigations of the mechanical and microstructural part properties will also be performed. 
The findings of this work represent a major step for the industrial advancement of coaxial wire-based 
laser metal deposition, which constitutes a promising alternative to the powder-based process 
variants. 
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