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Abstract.  The forming limit diagram (FLD) is a widely used tool to assess the formability of a metal 
sheet [1]. The current study aims to investigate the influence of strain rate, material anisotropy and 
hardening on the FLD of Ti-6Al-4V predicted by the well-known Marciniak-Kuczynski (M-K) 
method. The tensile data of quasi-static (8∙10-5 s-1), intermediate (0.5 s-1) and dynamic experiments 
(approximately 1000 s-1) on Ti-6Al-4V sheet are available at three different orientations, with respect 
to the rolling direction: 0°, 45° and 90°. Different hardening models are taken into account. Also, von 
Mises and Hill yield criterion are considered. The results show that the influence of the hardening 
law on FLD is significant. In particular, the most conservative limit strains are predicted by the Voce 
law because of its saturation characteristic. The yield criterion is found to only affect the right part of 
the FLD. Regarding the strain rate influence, the left part of the FLD is mainly dominated by the 
amount of uniform elongation, while the right part is strongly dependent on the yield function used. 
Therefore, for this region the effects of strain rate and yield function are difficult to distinguish. 
Finally, the effect of material anisotropy on the FLD is significant. Under quasi-static conditions, the 
Lankford coefficient seems to be the driving factor in uniaxial and equibiaxial deformation. However, 
in plane strain conditions the effect of the strain hardening exponent is dominant. 

Introduction 
The assessment of material formability is a crucial requirement in any sheet metal operations. For 

this purpose, the forming limit diagram (FLD) is nowadays a widely used tool. The FLD is a limit 
curve separating the principal in-plane strain space into two regions. The region above the curve refers 
to strain states in which localized necking is expected to occur, while the region below represents the 
safe region in which the sheet can be formed without failure. Even though the FLD can be 
experimentally determined, the procedure involves many different specimen geometries and is time 
consuming. To overcome this issue, several theoretical techniques have been developed over the 
years. One of the most commonly used was developed by Marciniak and Kuczynski in 1967, namely 
the M-K method [1]. 

Since the formability of metals is affected by the imposed strain rate, also the FLD is dependent 
on it. The FLDs obtained through the M-K technique are able to capture that strain rate sensitivity [2, 
3]. Also, the influence of anisotropy, introduced in the metal sheet during the rolling process, has 
been found to be relevant [4]. The M-K method can account for anisotropy, too. Because of its great 
flexibility, the M-K method has been used for a broad class of materials. In particular, several studies 
have been carried out on Ti-6Al-4V, the most used titanium alloy. It has been observed that at high 
temperatures, the effect of the yield function on the FLD is more pronounced than the effect of the 
hardening model [5]. Other studies highlighted the negative effect of strain rate on the FLD limit 
strains [6]. However, the anisotropy of Ti-6Al-4V was not taken into account in this work. In general, 
another important feature of almost every study is the lack of orientation-specific FLDs, namely FLDs 
along different orientations of the principal strains. The main reason is that the effect of in-plane 
anisotropy on the FLD is usually neglected in engineering applications, and the FLD is determined 
with the major principal strain along the rolling direction. The other reason is that the limit strains 
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obtained along different orientations usually lie within the experimental scatter of the FLD, thus the 
anisotropy influence cannot be clearly distinguished. However, thanks to innovative strain 
measurement techniques, such as Digital Image Correlation (DIC), it is possible to reduce this scatter 
and make the anisotropy effect on the FLD relevant [7]. 

The current work aims to investigate the influence of the aforementioned factors on the predicted 
FLD of Ti-6Al-4V. The tensile data of quasi-static (8·10-5 s-1), intermediate (0.5 s-1) and dynamic 
experiments (approximately 1000 s-1) on Ti-6Al-4V sheet are available at three different orientations, 
i.e., 0°, 45° and 90°, with respect to the rolling direction. For each of the three strain rate conditions, 
the FLD is evaluated through the M-K method implemented in MATLAB, considering different 
material models. More specifically, an isotropic and anisotropic response of the material is assumed 
using the von Mises and Hill yield functions, respectively. For the latter, two parameters calibration 
techniques, based on yield stresses and Lankford coefficients, respectively, are considered. The 
influence of the adopted hardening model is also studied and orientation-specific FLDs are presented. 
The different FLDs obtained are then compared and critically discussed.  

Material and Methods 
Material. The material considered in this study is titanium alloy Ti-6Al-4V. It comes in the shape of 
a cold rolled sheet with a thickness of 0.61 mm. The nominal composition in weight percent is 
reported in Table 1. 

Table 1. Chemical composition of Ti-6Al-4V in wt%. 

Fe V Al C O N 

0.16 3.98 6.27 0.009 0.19 0.009 

Experimental methods. The tensile data of quasi-static (8·10-5 s-1), intermediate (0.5 s-1) and 
dynamic experiments (approximately 1000 s-1) on the Ti-6Al-4V sheet are provided along three 
different orientations with respect to the rolling direction: 0°, 45° and 90°.  

The quasi-static and intermediate experiments were carried out using an Instron 5569 tensile test 
device, whereas for the dynamic tests a Split Hopkinson Tensile Bar (SHTB) was used. Making use 
of the DIC technique the plastic curves shown in Fig. 1 are obtained for each strain rate and each 
orientation. 
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(a)  (b) 

 
 

(c) 

 
Figure 1. Plastic curves obtained along different orientations with respect to the rolling direction for quasi-
static (a), intermediate (b) and dynamic experiments (c), corresponding to nominal strain rates of 8·10-5 s-1

, 

0.5 s-1 and 1000 s-1, respectively. 

For each test, the DIC data additionally allowed to derive the Lankford coefficient, according to 
Eq. 1. εẏy

p is the plastic strain rate along the transverse to the loading direction and ε̇zz
p the plastic 

strain rate along the thickness. Thus, the Lankford coefficient is an indication of both the anisotropy 
and formability of the material. The plastic strain rates of Eq. 1 are obtained considering the slope of 
the line fitting the plastic strain vs time experimental data in the uniform plastic deformation region. 
For this reason, the levels of strains between which the Lankford coefficients are obtained depend on 
the specific plastic curve considered. 

𝑟𝑟 =   
𝜀𝜀𝑦̇𝑦𝑦𝑦𝑝𝑝

𝜀𝜀𝑧̇𝑧𝑧𝑧𝑝𝑝
 . 

(1) 

Material model. For each of the three different strain rates, the plastic curve is fitted through a 
hardening model for each orientation. Swift, Voce and Combined Swift-Voce hardening laws are 
considered and reported in Eq. 2, Eq. 3 and Eq. 4, respectively. 

𝜎𝜎 �𝜀𝜀𝑝𝑝� =  𝐴𝐴�𝜀𝜀0 + 𝜀𝜀𝑝𝑝�
𝑛𝑛

 ;        (2) 

𝜎𝜎 �𝜀𝜀𝑝𝑝� = 𝜎𝜎0 + 𝑄𝑄�1 − 𝑒𝑒−𝛽𝛽𝜀𝜀𝑝𝑝� ; (3) 

𝜎𝜎 �𝜀𝜀𝑝𝑝� =  𝛼𝛼 ∙ 𝐴𝐴�𝜀𝜀0 + 𝜀𝜀𝑝𝑝�
𝑛𝑛

+ (1 − 𝛼𝛼) ∙ �𝜎𝜎0 + 𝑄𝑄�1 − 𝑒𝑒−𝛽𝛽𝜀𝜀𝑝𝑝�� .  (4) 

σ is the true stress and εp the true plastic strain, while A, ε0, n, σ0, Q, β are fitting parameters. The 
weighting factor α for the Combined law is set equal to 0.5, in order to equally consider the 
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contribution of Swift and Voce laws. The Combined model turns out to be the most accurate one in 
describing any of the plastic curves, thanks to the fitting flexibility provided by its six parameters. 

Since for each different angle to the rolling direction the fitting parameters are obtained 
considering the experimental data of that specific orientation, a big amount of parameters sets is 
available. Thus, in Table 2 only the fitting parameters obtained for the quasi-static experiment along 
the rolling direction, corresponding to the reference, are presented.  

Because the hardening models involved are not strain rate and temperature-dependent, the 
adiabatic heating, especially occurring at high strain rates, is not explicitly accounted for in the M-K 
analysis. However, strain rate and thermal softening effects are indirectly considered by fitting the 
hardening parameters using high strain rate test data. 
Table 2. Fitting parameters of the different hardening laws obtained for the quasi-static experiment along the 
rolling direction. 

Swift 
A ε0 n 

1439 0.02290 0.1053 

Voce 
σ0 Q β 

970.9 224.1 15.75 

Combined Swift-Voce 
A ε0 n σ0 Q β 

2877 0.02770 0.1160 0.02950 44.02 680.3 

 Then, an associated flow rule (AFR), in which the plastic potential coincides with the yield 
function, is assumed. The governing equation of AFR is reported in Eq. 5, where ε̇p is the plastic 
strain rate tensor, εṗ the plastic equivalent strain rate, f the yield function and σ the stress tensor: 

𝜀𝜀𝑝̇𝑝 = 𝜀𝜀𝑝̇𝑝  ·  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

 . 
 

(5) 

In order to take into account the effect of anisotropy, the Hill48 equivalent stress σeq is considered 
as yield function f and reported in Eq. 6, expressed in the reference frame associated with the axes of 
orthotropy:  

𝜎𝜎𝑒𝑒𝑒𝑒2 = 𝐹𝐹(𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑧𝑧)2 + 𝐺𝐺(𝜎𝜎𝑧𝑧𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑥𝑥)2 + 𝐻𝐻(𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑦𝑦)2 + 2𝐿𝐿𝜎𝜎𝑦𝑦𝑧𝑧2 + 2𝑀𝑀𝜎𝜎𝑥𝑥𝑧𝑧2 + 2𝑁𝑁𝜎𝜎𝑥𝑥𝑦𝑦2. (6) 

F, G, H, L, M and N are the Hill parameters, which are determined, for each strain rate, following 
two different calibration approaches. The first, here named Sr-based approach, makes use of both 
yield stresses and Lankford coefficients. The second, here named r-based approach, involves the 
Lankford coefficients only. The Sr-based and r-based parameter calibration approaches are presented 
in Table 3, where the subscript of yield stresses σ and Lankford coefficients r refers to the angle with 
respect to the rolling direction along which they are evaluated. Since this study assumes that the sheet 
is subjected to plane stress conditions, σyz and σxz are equal to zero. For this reason, the L and M 
parameters are not involved and their expression thus not reported. 
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Table 3. Two different approaches for the calibration of Hill parameters. 

Hill parameter Sr-based r-based 

F �
𝜎𝜎0
𝜎𝜎90

�
2
−

𝑟𝑟0
1 + 𝑟𝑟0

 
𝑟𝑟0

𝑟𝑟90(1 + 𝑟𝑟0)
 

G 
1

1 + 𝑟𝑟0
 

1
1 + 𝑟𝑟0

 

H 
𝑟𝑟0

1 + 𝑟𝑟0
 

𝑟𝑟0
1 + 𝑟𝑟0

 

N 𝜎𝜎02 �
2

𝜎𝜎452
−

1
2𝜎𝜎902

� −
1 − 𝑟𝑟0

2(1 + 𝑟𝑟0)
 

(𝑟𝑟0 + 𝑟𝑟90)(2𝑟𝑟45 + 1)
2𝑟𝑟90(1 + 𝑟𝑟0)

 

In the description of the isotropic behaviour, the yield function f is the von Mises equivalent stress. 
It can be obtained by setting F=G=H=0.5 and L=M=N=1.5 in Eq. 6. 

Marciniak-Kuczynski method. Given the hardening law and the flow rule, the formability of Ti-
6Al-4V is evaluated by means of the Marciniak-Kuczynski (M-K) method. It assumes an 
inhomogeneity of the material in the form of an imperfection zone. As shown in Fig. 2, this region, 
represented by the groove b, is characterized by a thickness lower than the one of the homogeneous 
zone a. The nature of the imperfection can lie in different factors, such as surface roughness or a 
macroscopic defect. When subjected to in-plane deformation, zone a deforms proportionally, while 
in the groove plastic strain accumulates faster because of its thickness reduction. This leads to higher 
strain increments in the groove, which eventually results in strain localization. The onset of strain 
localisation is assumed to correspond to the forming limit of the sheet. 

 
Figure 2. Representation of the metal sheet considered in the M-K method with the XYZ and ntZ reference 
frames. 

In the current study, the M-K method is implemented in a MATLAB script, following the iterative 
algorithm of Fig. 3. Two basic boundary conditions are the fundaments of the algorithm, namely the 
force equilibrium along the n-axis and congruence between zone a and zone b along the t-axis. Let 
XYZ and ntZ be the reference frames associated with the loading direction and the groove orientation, 
respectively. Also, let ψ be the orientation of the groove, namely the angle between the 
aforementioned reference frames. In the algorithm, firstly the strain path ρ and the groove orientation 
ψ are set. The former is defined in Eq. 7, where εxx

a and εyy
a are the principal strains of zone a along 

the X and Y-direction, respectively. 

𝜌𝜌 = 𝜀𝜀𝑦𝑦𝑦𝑦𝑎𝑎

𝜀𝜀𝑥𝑥𝑥𝑥𝑎𝑎
 .     

 

(7) 

Then, the strain increment Δεxx
a is set, εxx

a and εyy
a are updated and the strain εzz

a is evaluated 
assuming volume conservation. Therefore, εa

XYZ, the strain tensor of zone a in the XYZ reference 
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frame, is built. By means of εa
XYZ, the strain tensors εa

ntZ and εa
RTZ are obtained with a change of 

reference frame. The former is expressed in ntZ reference of frame, the latter in the reference frame 
associated with the rolling and transverse direction (RTZ). In the current study, it is assumed that 
RTZ is inclined at an angle α with respect to XYZ. The stress tensor σa

RTZ is then calculated by 
applying one of the hardening laws of Eqs. 2÷4 and the flow rule of Eq. 5. Afterwards, the congruence 
condition is applied and the strain εtt

b of the groove along the t-direction is obtained. The strains εnn
b 

and εnt
b are first guessed and the strain tensor εb

ntZ is then evaluated. By changing the reference frame 
and applying both the hardening law and the flow rule, the strain tensor εb

RTZ and the stress tensors 
σb

RTZ and σb
ntZ are obtained. The updated values of εnn

b and εnt
b are then calculated through the 

Newton-Raphson method applied to the equilibrium equations. The whole process just described 
continues as long as the ratio between principal strains in zone b and zone a is lower than a critical 
value Rlim, here assumed equal to 4. Once Rlim is reached, the strains εxx

a and εyy
a are considered as 

the limit values for the specific orientation of the groove.  
The iterative procedure of Fig. 3 is repeated, with the same strain path ρ, for different groove 

orientations ψ and the point reported in the FLD is chosen as the one exhibiting the minimum values 
of εxx

a and εyy
a. Finally, if this procedure is repeated as many times as the different ρ values, the FLD 

is built. Regarding f0, the ratio between the initial thickness of zone b and zone a, it is usually 
calibrated in order to match the estimated and the experimental values under plane strain conditions 
[8, 9]. However, since these experimental data are not available for Ti-6Al-4V, it is set equal to 0.99. 

 

Figure 3. Representation of the algorithm implemented in MATLAB, according to the M-K method. This 
iterative scheme corresponds to single values of strain path ρ and groove orientation ψ. 
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Results and Discussion 
The Lankford coefficients obtained from the quasi-static experiments are represented in Fig. 4a, 
together with the fitted curve, as a function of the loading angle θ to the rolling direction. The curve 
is calculated according to the von Mises and Hill yield criterion, the parameters of which are identified 
using the two different approaches of Table 3. The von Mises curve predicts Lankford coefficients 
equal to 1 for all the loading directions because anisotropy is not involved in the corresponding 
criterion. The Hill curves clearly predict different values of the Lankford coefficients. Only the curve 
evaluated with the r-based approach is able to capture the experimental data. On the other hand, only 
the Sr-based curve, namely the curve obtained with the Hill function calibrated with the Sr-approach, 
can predict the yield stresses. The reason why the Hill yield criterion is not able to simultaneously 
reproduce the experimental behaviour of Lankford coefficients and yield stresses, lies in the nature 
of the function itself. Because it is quadratic in stresses and orthotropic, a specific relationship exists 
between yield stresses and Lankford coefficients. From Table 3, for example, if the two different 
approaches for the definition of the F parameter are combined, the following is obtained:  

𝜎𝜎0
𝜎𝜎90

= �
𝑟𝑟0(1 + 𝑟𝑟90)
𝑟𝑟90(1 + 𝑟𝑟0)

 . 

    

(8) 

From Eq. 8, it is clear how the Hill criterion is not able to fully predict, for instance, the quasi-
static experimental response of Ti-6Al-4V, which exhibits σ0 ~ σ90 but r0 ≠ r90. 

(a)   (b) 
  
 
 

                                                                                     
       

 

 

 

 

Figure 4. Experimental Lankford coefficients as functions of the loading direction, together with the von Mises 
and Hill fitted curves, for all the experiments (b) and quasi-static only (a).  

In Fig. 4b the same graph of Fig. 4a is shown, but for different strain rates and with the r-based 
Hill fitted curves only. The quasi-static and intermediate curves exhibit similar values for loading 
angles close to the rolling and transverse direction. However, they tend to diverge while moving 
towards θ=45°, where the intermediate curve is characterized by higher values. On the other hand, 
the dynamic curve shows a significantly different behaviour in the right part of the graph, where it 
exhibits Lankford coefficient values much lower than the quasi-static and intermediate ones. 

By means of the M-K method previously presented, the FLDs can be evaluated considering 
different strain rates and loading orientations with respect to the rolling direction. Additionally, the 
influence of the plasticity model, i.e., yield function and hardening model, can be assessed.  

For the FLDs of Fig. 5a, the quasi-static hardening properties along the rolling direction are used 
for the fitting of the hardening laws. Also, the Sr-Hill yield function is considered. The limit strain 
for plane strain conditions (ρ=0) is quasi-independent from the hardening law. However, while 
moving towards uniaxial (ρ=-0.5) and equibiaxial deformation (ρ=1), the FLD evaluated with the 
Voce law tends to diverge from the ones obtained with Swift and Combined laws. The former predicts 
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lower limit strains. The origin of the trend lies in the mathematical expression of the Voce law, see 
Eq. 3. In fact, the flow stress given by the Voce law tends to saturate for sufficiently high plastic 
strains, thus predicting larger strains at the same the same stress level. Hence, the FLD is negatively 
affected. On the other hand, the FLDs obtained with the Swift and Combined law exhibit very similar 
trends and values, because the corresponding hardening curves nearly overlap.  

If the three considered hardening models give a significantly different outcome, as is the case for 
the 45° direction, the corresponding FLDs themselves can be clearly distinguished, as shown in Fig. 
5b. Fig. 5b reports the FLDs obtained at the same strain rate condition of Fig. 5a but using the 
experiment along the 45° direction to calibrate the hardening laws. In this case, the discrepancy 
between the limit strains predicted by the Swift and Combined law is much higher than between the 
corresponding curves of Fig. 5a, due to the pronounced differences in the corresponding hardening 
curves.  

Finally, even though the Voce law predicts more conservative FLDs, the most reliable ones are 
obtained with the Combined law. Indeed, it is the most accurate in describing the plastic behaviour 
of the material, thanks to the higher flexibility provided by the six fitting parameters, against the three 
parameters for both the Swift and Voce laws. For this reason, all the FLDs presented from now on 
are evaluated using the Combined law. 

(a)         (b) 

Figure 5. FLDs obtained by fitting the hardening curves using quasi-static experiments along the rolling (a) 
and 45° direction (b), combined with the Sr-Hill yield function. 

The FLDs obtained using the Combined hardening rule and different yield functions are shown in 
Fig. 6a, considering the quasi-static experiment in the rolling direction to fit the hardening law.  

The left part of the FLD (εmin<0) is not affected by the yield function, as well as the point 
corresponding to plane strain condition. On the other hand, the right part of the FLDs (εmin>0) exhibits 
significant differences. Indeed, starting from εmin ~ 0.1, the von Mises criterion leads to limit strains 
higher than the ones predicted by the Hill yield functions, calibrated with either the Sr-based or r-
based approach. The greatest discrepancy between the three models occurs for equibiaxial 
deformation, where the limit strain predicted by the von Mises yield function is approximately twice 
the one predicted by the r-Hill function. Moreover, the FLD evaluated with the Sr-Hill function lies 
in between the two other FLDs in the right part of the graph. This may occur because in quasi-static 
conditions the anisotropy in stresses, on which Sr-Hill function is based, is less pronounced than the 
anisotropy in Lankford coefficients, characteristic of the r-Hill function [10].  
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(a)   (b) 

 
Figure 6. FLDs obtained using quasi-static (a) and dynamic (b) hardening, represented by the Combined 
model fitted using experiments along the rolling direction. The two Hill model formulations and von Mises 
model are considered. 

Similar trends are also observed in the FLDs based on the intermediate strain rate experiments, 
here not reported. However, the dynamic FLDs are clearly different, as shown in Fig. 6b. In fact, the 
Sr-Hill yield function predicts limit strains very close to the ones predicted by the von Mises yield 
function. This has to be attributed to the anisotropy in stresses observed for the dynamic experiments 
that is less pronounced compared to the one observed for the quasi-static and intermediate tests. 

As previously discussed, the strain rate can have a significant influence on the formability of the 
material. This is clear in Fig. 7, where the FLDs evaluated for different strain rates and yield functions 
are shown. Irrespective of the yield criterion involved, the left part of the FLD shows a clear trend. 
Indeed, the limit strains obtained for the quasi-static experiments are approximately twice as high as 
the ones corresponding to the intermediate and dynamic experiments. The same relationship is 
observed for the uniform elongation of the uniaxial tensile test: around 10% is reached for quasi-static 
experiments and around 5% for intermediate and dynamic tests. Thus, it is reasonable to claim that 
the left part of the FLD is mainly affected by the uniform elongation itself. On the other hand, for 
plane strain conditions, the intermediate and dynamic strain limits drop down to values close to zero, 
irrespective of the yield criterion used. 

Regarding the right part of the FLD, the considered yield function plays an important role. The 
formability prediction using the von Mises yield criterion (Fig. 7a) is consistent with previous studies 
carried out with the same criterion [6]. For the different strain rates, the FLD slope is similar, except 
for plane strain conditions. Moreover, the quasi-static limit strains are slightly higher than the 
dynamic ones, which are in turn greater than the ones obtained for the intermediate case. Different 
strain hardening exponents lie at origin of the differences between the curves. Indeed, several studies 
have highlighted that high strain hardening exponents delays the onset of localized necking, thus 
increasing the limit strains [11]. In fact, the highest values of strain hardening exponent and limit 
strains are observed for the quasi-static experiments, the lowest for the intermediate tests. 

If, on the other hand, the Sr-Hill yield function is used (Fig. 7b), the main difference lies in the 
dynamic FLD, exhibiting the highest limit strains for most of the right part of the FLD. If the r-Hill 
yield function is used, the dynamic limit strains lie in between the quasi-static and intermediate FLDs 
(Fig. 7c). 
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(a)  (b) 

 
       (c) 

 
Figure 7. FLDs obtained for different strain rates using von Mises (a), Sr-Hill (b) and r-Hill (c) yield functions. 
The experimental data considered for the Combined hardening law are obtained along the rolling direction. 

To assess the effect of the anisotropy on the material formability, three orientation-specific FLDs, 
evaluated under quasi-static conditions, are represented in black in Fig. 8. For each of them, the 
Combined hardening law corresponding to that specific orientation is considered and the r-Hill yield 
function is used. Then, the different FLDs are fitted through a MATLAB in-built three-dimensional 
curve, making sure that all the evaluated points lie on the curve. In the neighbourhood of uniaxial and 
equibiaxial deformation, the limit strains evaluated for the experiment along the 45° direction are 
higher than the ones evaluated along the rolling (0°) and transverse (90°) direction. This can be linked 
with the higher value of the Lankford coefficient observed for the 45° direction experiment. However, 
close to plane strain straining conditions, the trend is different. Indeed, here the highest limit strain is 
observed for the FLD along the transverse direction, for which the strain hardening exponent is 
higher. Thus, the Lankford coefficient seems to control the FLD except for the strain states close to 
plane strain, where the strain hardening exponent plays the most relevant role. 
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Figure 8. Three-dimensional graph obtained through the fitting of the quasi-static FLDs along three 
orientations. The separate FLDs are obtained using the r-Hill yield function and the Combined hardening law 
corresponding to the specific orientation.  

Conclusions 
The forming limit diagrams of Ti-6Al-4V sheet are evaluated using the well-known M-K method. 
The experimental data used in the analysis come from tensile tests in quasi-static, intermediate and 
dynamic conditions. Three hardening models are used, namely Swift, Voce and Combined Swift-
Voce. An AFR is implemented, making use of von Mises and Hill yield criteria. 

The influence of the hardening law on the obtained FLDs is not negligible. In particular, the limit 
strains predicted by Voce law are always the lowest due to the saturation of the stress inherent to the 
equation. Despite of the conservative nature of the FLD predicted by Voce hardening, the most 
reliable limit strains are evaluated by the Combined law, because of its ability to capture the 
experimental data with high accuracy. 

 The yield criterion is found to strongly affect only the right part of the FLD. In quasi-static and 
intermediate conditions, the strains predicted with the von Mises yield function are the highest, with 
the greatest discrepancy occurring for equibiaxial deformation. On the other hand, in dynamic 
conditions, the FLDs obtained through von Mises and Sr-Hill yield functions almost overlap, except 
for the equibiaxial condition. This is because in dynamic experiments, the anisotropy in stresses is 
less pronounced than in quasi-static and intermediate conditions. 

Regarding the influence of strain rate, the left part of the FLD is mainly dominated by the amount 
of uniform elongation. The higher it is, the higher the limit strains are. However, the trend observed 
in the right part of the FLD is strongly dependent on the yield function used. Therefore, for this part 
the effects of strain rate and yield function are difficult to distinguish.  

Finally, also the anisotropy of the material affects the FLD. In quasi-static conditions, the limit 
strains predicted for the 45° direction are the highest in uniaxial and equibiaxial deformation. This 
may be linked with the highest values of Lankford coefficients observed along that direction. 
However, the limit strains for plane strain conditions follow the trend of the strain hardening 
exponent. 
 To better take into account the effect of anisotropy, more accurate yield functions, able to 
simultaneously capture the stress and plastic anisotropy, are needed [12]. Moreover, a validation 
campaign is necessary to further assess the accuracy of the present study. 
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