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Abstract. Springback is one of the major defects that continuously concerns the sheet metal experts’ 
community. It is has long been known that the sheet thickness, the bending angle and the yield stress 
of the material primarily affect the angle change after the tools’ release. Besides, the consideration of 
the kinematic hardening (KH) model has powerful influence on the modelling results, too. In this 
study, we overviewed several possible factors on the springback with finite element modeling of a 
simple V-die bending operation, highlighting the effect of the material variables on the final shape. 
AutoForm® R7 software and the built-in theory of kinematic hardening were used for the material 
characterization, coupled with the Hockett-Sherby isotropic hardening rule as well as the Yld89 yield 
criterion. The material data for modeling kinematic hardening behavior were obtained by cyclic 
tension-compression tests, whilst the isotropic hardening and the yield surface parameters were 
acquired by simple uniaxial tension tests. The simulation results were compared to the experimental 
springback observations obtained by a CNC bending machine, without using springback 
compensation. A detailed parametric study was also carried out to highlight the level of criticality of 
the applied material variables on the final angle change. 

Introduction 
Springback of thin sheets that means the bending angle’s change after the tools’ release (i.e. in the 

unloading stage) is an extensively researched topic in the sheet metal forming industry. The proper 
springback evaluation and thus its suitable correction are relevant questions of the process planning, 
thanks to its powerful influence on the product’s geometric compliance. 

During bending, an elastic region develops in the thickness direction near to the neutral axis, which 
takes an elastic moment into the opposite direction relative to the deformation. On the other hand, the 
total strain is the sum of the elastic and plastic strains in the bent region, and the reversibility of elastic 
strain tries to restore the workpiece to its initial geometry [1]. As a result, the extent of the springback 
angle (θ*) is primarily influenced by the yield strength (Y) over elastic modulus (E) ratio and the 
thickness (t) if considering clearly the material parameters. The features of the bending geometry, 
such as the punch corner radius (R) and the bending angle (θ) are counted as technological conditions, 
which also have their own effect [2, 3, 4, 5]. From these, the conclusion can be made that the 
materials’ strength increase following the current trends in the structural engineering, further 
strengthens the role of springback correction recently.  

According to the mentioned circumstances, a strain reversal takes place during the springback, 
resulting in changes in the microstructure, too. As a direct consequence of the contrary movement of 
dislocations, the role of the Bauschinger effect becomes more emphasized in this process. To consider 
it, kinematic hardening formulas were developed in previous research. One pioneer in this field was 
Chaboche [6], whose model has been incorporated into the Simufact Forming® software. In the sheet 
metal forming industry, the Yoshida-Uemori model [7] is maybe the most widespread theory, which 
has been even developed further by them [8]. In this study, we used the AutoForm® KH model 
(discussed and referred later) to unfold how strong the impact of each material parameters is on the 
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results of springback modelling. Its importance is explained by the reduction demand of the difficulty 
implemented physical tests and shifting the focus to the most relevant variables.  

Material Characterization 
Applied materials. Three types of commercial, un-coated dual phase steels, namely Docol DP600, 

DP800 and DP1000 were investigated during this research. The DP abbreviation refers to the dual 
phase microstructure of the sheets, in which hard martensite particles are distributed in the ferrite 
matrix. These phases together provide the high strength and the relative good formability for this 
material family [9, 10].  

Material data identifying. The basic mechanical properties, which served as input parameters for 
the yield surface and the isotropic hardening definition were obtained by uniaxial tensile tests. The 
averages of the yield strength, the ultimate tensile strength (UTS), the uniform- and the total 
elongation (Ag and A80) as well as the r-values are listed in Table 1. The tensile experiments were 
carried out in 0°, 45° and 90° to the rolling direction, in accordance with the EN ISO 6892 standard’s 
prescriptions at room temperature, with constant cross-head speed on three parallel specimens. The 
r-values were defined at Ag-1(%) engineering strain for all steels, using touchless AVE video-
extensometer. The sheets had 1 mm nominal thickness (t) uniformly. 

 
Table 1. The basic material properties of the applied steels 

 Y 
[MPa] 

UTS 
[MPa] 

Ag 
[%] 

A80 
[%] 

r0 r45 r90 

DP600 444 656 12.8 20.6 0.803 0.910 1.010 

DP800 570 879 10.2 16.0 0.654 0.786 0.767 

DP1000 758 1099 6.7 10.6 0.752 0.730 0.811 
 
The kinematic hardening parameters were defined by cyclic tension-compression tests, in 

connection with which, the authors refer their own work. The details of the measurement method and 
the results are described in [11]. 

Bending experiments. The bending investigations were performed three times on initially flat 
blanks with constant 20 mm/min stroke by an AMADA HFE 50-20 CNC bending machine. The side 
view sketch of the bending tools (punch and V-die) can be seen in Fig. 1. All the samples were bent 
to 90°, which angle value was controlled by the punch motion, excluding springback corrections. 

The specimens had 120 mm width and 600 mm length, in which the length direction was coincided 
with both the rolling direction and the axis of the bending line. 

    
Fig. 1. Schematic view of the applied bending tools: punch with 3 mm radius (left) and die (right) 

Numerical Simulations 

Key Engineering Materials Vol. 926 993



 

AutoForm® R7 code was used to investigate the springback phenomenon in the model space. The 
die and the punch were specified as non-deformable, rigid elements. The blank was built up by elasto-
plastic shell elements, with 693 initial element number in the plane of the sheet and with 11 integration 
points in the thickness direction. The re-mesh object was defined in six levels of refinement. The 
modelled bending process, prior- and after the deformation can be seen in Fig. 2. 

 

  
Fig. 2. The arrangement of the tools and the workpiece in the bending model 

 
The strain hardening of the material was described by the Hockett-Sherby equation [12], as 

𝜎𝜎� =  𝜎𝜎𝑠𝑠 − exp(−𝑎𝑎𝜀𝜀)̅𝑝𝑝(𝜎𝜎𝑠𝑠 − 𝐴𝐴), (1) 
 

in which A is equivalent to uniaxial yield stress (Y in Table 1.), σs is the saturation stress and a and p 
are further material constants. The constants were determined based on the least squares method 
approximation from the tensile tests’ results and the values are summarized in Table 2, indicating the 
R2 value, too.  
Two yield functions, the Yld89 [13] and the Hill’48 [14] were also examined with the aim of 
monitoring those effect on the springback results. Both yield functions’ parameters were obtained by 
the r-values. However, the results got by the different yield surfaces were somewhat different, we 
primarily put the hardening parameters into the focus in this study. Due to the limited content of the 
paper, we will illustrate the model results using the Yld89 theory uniformly, in the rest of the paper.  

The kinematic hardening was described by the AutoForm® model according to the theory of 
Kubli, Krasovskyy and Sester [15]. Since this model is compatible to any hardening theory, it can be 
interpreted as a supplement of the isotropic hardening phenomenon with four added parameters: 
Young’s reduction factor (γ), Young’s reduction rate (χ), transient softening rate (κ) and stagnation 
ratio (ξ). These parameters determine the three typical stages of the stress-strain curve during reverse 
loading, the early re-plastification (i), the transient softening (ii) and the hardening stagnation (iii).  

The model describes the connection between the reverse stress (σr) and reverse strain (εr) with a 
smooth function in the early re-plastification (linear part) and the transient softening (non-linear part) 
stages. It can be followed in Eq. (2), in which σh (𝜀𝜀)̅ is the plastic strain dependent isotropic hardening 
stress, El (𝜀𝜀)̅ is the initial tangent modulus at the beginning of the load reversal and κ is a material 
parameter representing the steepness of the non-linear part of the stress reversal curve. 

 

𝜀𝜀𝑟𝑟 =  𝜀𝜀𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟 =  𝜎𝜎𝑟𝑟
𝐸𝐸𝑙𝑙(𝑝𝑝)

+ 𝜅𝜅 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ2 � 𝜎𝜎𝑟𝑟
2𝜎𝜎ℎ(𝑝𝑝)

�
2
  (2) 

 
In the linear part, the tangent modulus is responsible for defining the material behavior 

predominantly, which decreases with the accumulated plastic strain, in the following form (Eq. (3)): 
 

𝐸𝐸𝑟𝑟 =  𝐸𝐸0[1 − 𝛾𝛾 ∙ (1 − 𝑒𝑒−𝜒𝜒𝜀𝜀�)].  (3) 
 
Here γ and χ parameters are responsible for the description of the elastic modulus’s reduction and 

the steepness of the early re-yielding period. In the possession of the stress-strain curves obtained by 
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the cyclic tension-compression tests, the γ, χ and κ parameters were determined, and be collected in 
Table 2. Here, the default values advised by the AutoForm® for high strength steels (HSSs) are also 
indicated. According to our experiences, the fourth added parameter (ξ) that indicates the amount of 
the workhardening stagnation has the least effect on this type of springback, therefore it has been 
ignored in this study.  

 
Table 2. The parameters of the Hockett-Sherby equation and the AutoForm® KH model 
 σs a p R2 γ χ κ 

DP600 780 21.0 0.812 0.9995 0.123 37 0.012 

DP800 991 38.1 0.765 0.9991 0.113 46 0.014 

DP1000 1160 102.0 0.785 0.9969 0.094 57 0.014 

AF® def HSS - - - - 0.130 40 0.014 

Results and discussion 
‘EXP’ notation indicates the springback angles determined on the edges of the sheets by a 

workshop angle meter with 15’ preciseness in Fig. 3. The validation of the measurements results is 
in progress by a coordinate measuring equipment. Generally, no higher than ±1.0° average deviation 
occurred for all materials during the experiments. Since the representation of all three mentioned DP 
materials’ results needs an extensive discussion, only the results of DP600 fit into this manuscript.   

 
Fig. 3. The measured and the modeled springback angles with and without using KH parameters 

(DP 600) 
 
Blue and yellow columns belong to the simulation results obtained by the default (blue) and the 

user-defined (yellow) KH parameters in the figure above. Red column shows the simulated 
springback value without using KH model. It can be stated that using KH parameters suits the model 
results better to the experiments and there is no outstanding difference between the application of 
default and user defined parameters at this material. Note that the material parameters of DP600 is 
quite similar to the default ones. Nevertheless, the impact of each material KH parameters on the 
modelled results is still in the background, which is worth looking behind.  

Sensitivity analysis. To assess the sensitivity of the simulation results to the material data, a 
parametric study was performed in the AutoForm R7® software on the user-defined variables. The 
sheet thickness, the elastic (Young) modulus, the isotropic and the kinematic hardening parameters 
were systematically changed to reveal the influencing intensity of the applied material parameters. 
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The effect of the yield surface definition was also studied, but due to its less impact on the springback, 
only the results obtained by the Yld89 yield theory is discussed here. 

 

 
Fig. 4. The effect of 10% change in the sheet thickness and the Young modulus on the springback 

 
As shown in Fig. 4, the changing of both the sheet thickness and the elastic modulus cause a 

relatively symmetrical deviation of the springback. A 10% increasing or decreasing of these variables 
result approx. 5-8% change in the opposite direction. Compared these to the effect of the isotropic 
hardening parameters’ change (see next figure), it is well visible that the thickness and the elastic 
modulus represent a more significant influence on springback, except for the saturation stress 
parameter. 

 
Fig. 5. The effect of 10% change in the Hockett-Sherby equation parameters on the springback  

 
Fig. 5 indicates that a 10% change of the isotropic hardening parameters leads to generally a lower 

deviation than the thickness and the elastic modulus have. Only, the effect of the saturation stress is 
in a similar magnitude. Since the saturation stress increase leads to the strength increase of the 
material, it shows changes in the same direction, just like the average yield stress (i.e. A parameter). 

996 Achievements and Trends in Material Forming



 

Interestingly, the p exponent behaves on the other way than the rest parameters. It is also visible that 
the a parameter has the least effect on modelled springback.  

 

 
Fig. 6. The effect of 10-30% change in the Young’s reduction factor on the springback 

 
The cases of the kinematic hardening parameters are described in Fig. 6 – 8. It can be observed 

that the most powerful influence on the springback is represented by the transient softening rate, i.e. 
the steepness of the non-linear part in the reversal stress-strain curve. The impact of the parameters, 
which affect the change of the Young modulus are similar, and a little stronger effect can be realized 
by the Young’s reduction factor. All three parameters cause symmetrical intervention and 
monotonous growth in the springback results. 

The effect of the stagnation ratio is almost negligible and not discussed here. 
 

 
Fig. 7. The effect of 10-30% change in the Young’s reduction rate on the springback 
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Fig. 8. The effect of 10-30% change in the transient softening rate on the springback 

 

Conclusion 
We have focused on the material parameters’ sensitivity of springback modelling using the 
AutoForm® model at simple V-die bending. Taking KH behavior into consideration has moved the 
simulation results closer to the experiments, and an exact impact analysis was carried out on the most 
emphasized input variables, in the same time. Based on the results it can be observed that most of the 
investigated parameters cause symmetric deviations in springback, i.e. decreasing or increasing of 
each parameters have roughly the same effect in the angle change tendency. It is worth mentioning 
that the saturation stress and the transient softening rate parameters caused the highest deviation on 
the modeled springback values, among the isotropic and the kinematic hardening parameters 
respectively. Besides that the Young’s reduction factor has approx. two times stronger effect than the 
Young’s reduction rate has, both of their impact is almost negligible, and the default parameters can 
be used safely for DP600. 
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