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Abstract. The velocity fields of axisymmetric direct extrusion of metals was analysed by the upper-
bound method and compared with the results from the finite-volume method, FVM. The upper-bound 
technique proposed by Avitzur and by Zhao et al. together with the streamline functions were 
employed to calculate the analytical velocity fields, which consider the friction at die wall. Moreover, 
the components of strain-rate are also presented. Additionally, the axisymmetric extrusion process 
was modelled by the FVM method to calculate the velocity fields and compared with the Avitzur’s 
and by Zhao’s solutions. The FVM velocity fields were calculated by using the Eulerian approach of 
fixed grid, the governing equations of metal plastic flow and conservation laws discretized by the 
FVM and the Explicit MacCormack method in structured and collocated mesh were also employed. 
Friction at die wall was modelled by the friction factor model, using the tangential shear stress 
boundary conditions. The examined material experimental parameters were obtained from the 
Al 6351 aluminium alloy in the direct extrusion process at 450o C. Velocity fields of the longitudinal 
and radial velocity distributions by the upper-bound and FVM methods are presented and compared. 
Good agreement is shown between the radial velocity component Vr from the Avitzur´s and FVM 
results, but poor for the longitudinal velocity Vz. From the analysis of velocity fields, the most severe 
condition of wear on the inner wall of the die and material surface damage occurs in the area near the 
exit corner of the die. However, the predicted location of the severe wear region in the die wall by 
the FVM method is located prior to the point predicted by the Avitzur model. 

Introduction 
The extrusion process of metals is a thermo-mechanical metalworking operation largely applied in 

the manufacturing of steel and aluminium tubes, bars and aluminium profiles. Thus, it is an important 
metalworking and industrial process for manufacturing structural parts. Extrusion process of metals 
is carried out at warm and hot temperatures, consequently, process modelling has been investigated 
by two independent approaches: the mechanics of metal flow and the metallurgical evolution of 
microstructural features such as grains and porosities. 

Historically, the Upper-bound, the Slip-line fields and the Finite Element Methods have been 
applied with relative success for decades to calculate loads, stress, strain, strain-rate and velocity 
fields in the mechanics analysis of metal extrusion [1,2,3]. Experimental visioplasticity techniques 
have been also employed to physically simulate and visualize the details of metal flow with model 
materials such as plasticine, lead, aluminium and the gridded split billet and the strip-pattern 
techniques. Nevertheless, recently in the academy, Bressan et al. [4] have also investigated the use of 
the Finite Volume Method, FVM, to analyse metal flow in extrusion: literature suggests that metal 
flow in extrusion can be analysed as a viscous fluid, therefore, modelled by the plastic flow 
formulation [4, 5]. Applications of FVM to solid mechanics was also recently reviewed by Cardiff 
and Demirdžić [6]. Thus, plastic flow of metal in extrusion and drawing can be modelled as the flow 
of an incompressible non-linear viscous fluid. This hypothesis can be assumed because metal 
extrusion is a metal flows without volume change. 
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The MacCormack Numerical Method is traditionally used to solve the governing differential 
equations in fluid dynamics applications, particularly in the complex aerodynamics situations. This 
method has the advantage to smooth the pressure pick discontinuities produced by the pressure shock 
waves. Additionally, it is a numerical method of second order accuracy in time and space. Thus, the 
MacCormack method is commonly used to model compressible and incompressible fluid flow, using 
the FVM to solve the governing differential equations [7]. 

Present work compares the solutions of FVM numerical scheme proposed by Bressan et al. [4] 
with the upper-bound method (model proposed by Avitzur [8] and the model proposed by Zhao 
et al. [9]) for calculating the velocity fields of metal flow in the extrusion process, in steady state 
conditions. In the Finite Volume Method, the governing equations were discretized using the Explicit 
MacCormack Method in structured and collocated mesh. 

Axisymmetric Extrusion Analysis by the Upper-Bound Method and the Streamlines 
The Upper-bound technique is an analytical method to calculate metal forming operation loads and 

power. The method assumes a kinematically admissible velocity fields and the existence of surfaces 
of velocity discontinuities. The kinematics of plastic deformation or kinematically admissible 
velocity field of the metal forming process should be obtained from the die geometry and velocity 
components which satisfy the boundary conditions and volume constancy. Flow streamlines, on the 
other hand, are defined as the lines that describe the path followed by a particle during plastic flow. 
Thus, the velocity field components are derived from the streamfunction which is assumed to 
describing the flow and generally no friction is assumed at the die. 

According to the Avitzur´s extrusion model [8] in the (z,r)-axis for a spherical velocity field, the 
velocity components, the surfaces of velocity discontinuities and streamlines in the deforming region 
II of the axisymmetric direct extrusion process, as seen in Fig.1, are calculated by the equations, 
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where Vz and Vr are the velocity components, Vo is the die entry velocity, Ro is the entry radius of the 
die, r is the current radius in the deforming region II, ϕ is the streamline angle in the region II and α 
is the die semi-angle. Avitzur´s streamlines drawing is depicted in Fig.2a. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Avitzur´s model: schematic drawing of the geometry of axisymmetric extrusion process 

with the entrance velocity Vo, velocity components and streamlines. 
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Fig. 2. Extrusion streamlines, die semi-angle α=32o : a) Avitzur´s model and b) Zhao´s model. 
An alternative streamfunction and the correspondent velocities components, assuming no friction 

at die, for the axisymmetric direct extrusion process was proposed by Zhao et al. [9]. 
In cylindrical coordinates system (r,θ,z), the governing equation for an incompressible flow or the 

plastic flow continuity governing equation is given by, 
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where Vr , Vθ and Vz are the velocity components. For an axisymmetric extrusion process without 
rotation, the velocity component Vθ= 0, therefore, the governing Eq. 2 is reduced to, 
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Assuming the definition of Stokes´ streamfunction Ψ(r,z), which satisfy Eq.3, the velocity 

components Vr , Vz and the resultant velocity V are calculated by, 
 

      r
1V
r z
∂Ψ

= −
∂

      ;    z
1V
r r
∂Ψ

=
∂

     ;    2 2
r zV V V= +                                                           (4a,b,c) 

 
After the integration of Eq.4, defining Ψ(r,z)= 0 at the axisymmetric extrusion axis and Ψ(r,z)= 

Cab , constant at the die boundary AB, the Zhao´s streamline function is obtained as, 
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And the Zhao´s velocities components in the region II for the axisymmetric extrusion are [9], 
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where the volume constant, 2

o oc R V= π . Zhao´s streamlines drawing is shown in Fig.2b. 
The strain-rate components are calculated from the following equations, z r 0θ θε =ε =  , 
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Axisymmetric Extrusion Modelling by the Finite Volume Method 
The FVM method or control volume method is a numerical method to calculate all metal forming 

process variables. The deforming material domain of the analysed process is divided into small 
volume units, named control volumes, which constitute the grid or mesh. 

The differential equations of the governing conservation laws (of mass, momentum and energy) in 
cylindrical coordinates system (r,θ,z) for the axisymmetric extrusion case, for 0Fθ θ∂ ∂ = , can be 
merged into a compact matrix structure in the form of [4]: 
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where t is time, and Q , rF , zF  and S  are flow vectors which assume the following format in the 
Euler approach of fixed mesh in space: 
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where ρ is material density, T temperature, q  the rate of heat transfer, rr zz rz, , ,θθσ σ σ σ  the stress 
components, σ  and ε  the equivalent strain-rate. The field variables to be determined are in the flow 
vector Q. the equivalent stress 

Integrating Eq.8 over the control volume, employing Gauss' theorem, the following differential 
equation is obtained: 
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where s is the outward vector of the surface and mnV  is the control volume area. Therefore, the 
conservation laws are applied to each control volume. 

Eq.10 was solved numerically, employing the MacCormack numerical strategy [7], which 
comprises the predictor and corrector steps in the numerical convergence process. Thus, the 
MacCormack converged current step is calculated by the average between the predictor and corrector 
steps, 

1+t
mnQ  = ( 1t

mnQ + +
1+t

mnQ  )/2 , t  is the current time and ∆t is a virtual time step. Therefore, the numerical 
MacCormack method is a pseudo-transient calculation process, where ∆t is a virtual time increment 
to obtain the final converged solution. The required time step to attain numerical stability in the 
numerical convergence process was ∆t = 10-18 s. 
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Present metal plasticity constitutive equation for the axisymmetric plastic flow in extrusion 
considered the material to be incompressible, isotropic and rigid-viscous-plastic. The relation 
between the stress component i jσ  and strain rate tensor ijε  was written in the following form 

ij m ij2σ = −σ + ηε , where σm is hydrostatic pressure calculated by ( ) 3/zzrrm σ+σ+σ=σ θθ . Metal 
plastic flow equivalent viscosity η was calculated from the associated plastic flow potential 

( )ij ijsε = λ , thus, 1 2 3η λ σ ε= =  .
 
The equivalent strain rate was defined as ( ) ij ij2 / 3ε = ε ε    and the 

equivalent stress was ( )3
2 ij ijs sσ = , where sij is the deviatoric stress component. 

The boundary conditions applied in the present direct extrusion analysis [4], at the solid wall 
interface between material and die, considered friction factor, mknt =τ , where τnt is the tangential 
friction stress, k the material yield shear stress and m the friction factor. Assuming isotropic material, 
von Mises yield criteria and the shear strain rate ntγ , the tangential friction shear stress is: 

ntnt )3/2( γεσ=τ   . 

Material and Experimental Procedure 
Comparison of results of direct extrusion of Al 6351 aluminium alloy by the analytical solutions 

and the FVM method developed by Bressan et al. [4] are presented and discussed in the next session. 
The Al 6351 billets were extruded in controlled conditions of 450 oC and the extrusion speed of 
10 mm/s (details are reported in [10]) and were simulated by FVM method. 

The experimental average parameters of Al 6351 alloy, the extrusion process and simulation 
parameters used in the FVM simulations are seen in Table 1. The tools were modeled as rigid solid. 
The viscoplastic friction model for sliding without lubrication and no-stick conditions was adopted 
with the friction factor m equal to 0.5. Flow stress of Al 6351 alloy were obtained from tensile tests 
at 450oC and strain rate of 0.001 and 0.1/s. The curves were fairly linear with almost constant yield 
stress which can be represented by a rigid-perfectly-plastic material. Thus, the material flow stress 
behavior was modeled as rigid-strain rate sensitive material with the hardening law: MKσ = ε . 

Table 1. Parameters used in the analysis of Al 6351 alloy direct axisymmetric extrusion. 
 Parameters       value   Parameters        value 
Density (ρ )    2710 [kg.m-3]   Quantity of control volumes   1110 
Yield stress ( Y 2kσ = )  255 [MPa]   Time step (∆t)        10-18 [s] 
Die entry radius (Ro)    30 [mm]   Die semi-angle (α)           32.3° 
Area reduction (Ar = 9)        89 %   Friction factor parameter (m)      0.5 
Die exit radius (Rex)   10 [mm]   Material extrusion temperature (T)   450 [oC] 
Inlet extrusion velocity 
  (Vo)  

 
      20 [mm/s] 

  Material strain hardening law: rigid 
  perfect-plastic, strain rate sensitivity 

 K=255 [MPa] 
      M = 0.10 

Results and Discussions 
The geometry of the fixed mesh with 1110 volumes employed in the present FVM numerical 

simulations and the Avitzur´s model of the axisymmetric plastic flow of direct hot extrusion of Al 
6351 aluminium alloy is shown in Fig.3. The required time step to attain numerical stability in the 
numerical convergence process was ∆t = 10-18 s, and the number of iterations loops was approximately 
30.000 loops. 
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Fig. 3. Geometry of fixed mesh in space used in the present FVM numerical simulations of the 

axisymmetric direct extrusion of Al 6351 aluminium billets, using 1110 control volumes. 
    

 
Fig. 4. Comparison of the velocity field results by the FVM numerical simulations and the 

Avitzur’s model: (a) axial component Vz and (b) radial component Vr by the FVM simulations. 
(c) axial component Vz and (d) radial component Vr by the Avitzur’s model. Friction factor m=0.5. 

The comparisons of the velocity field results by the FVM numerical simulations and the Avitzur’s 
analytical model are depicted in Fig.4. In the FVM approach, the friction factor at the die wall, 

mknt =τ , was assumed equal to m=0.5. However, in the Avitzur’s analytical velocity field model seen 
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in Eq.1a and Eq.1b no friction was considered. Therefore, the Avitzur’s field of the axial velocity 
component Vz at the die deformation region is quite different from the FVM model. Nevertheless, 
the Avitzur’s field of the radial velocity component Vr is very similar to the FVM model. 

In Fig.5, assuming friction factor m=0 in the FVM numerical simulations, the FVM field of the 
axial velocity component Vz has no change, except near the die wall. Thus, the difference of the 
fields, distribution of velocity bands of the axial velocity Vz is quite large compared with Avitzur. 

Comparisons of the velocity component Vr field results by the FVM simulations and the Zhao’s 
model is shown in Fig.6. The maximum radial velocity attained in extrusion at die exit corner was: 
Vr = -0.06 m/s (FVM approach) and -0.12 m/s (Zhao´s approach). 
 

Fig. 5. Comparison of the velocity Vz field results by the (a) FVM numerical simulations and the 
(b) Avitzur’s model. Assuming friction factor m at die wall equal to zero, m=0. 

   
Fig. 6. Comparison of the velocity Vr field results by the (a) FVM numerical simulations and the 

(b) Zhao’s model. Assuming friction factor m at die wall equal to zero, m=0. 

Conclusions 
Based on the analysis of present analytical models of axisymmetric extrusion proposed by Avitzur 
and by Zhao, and the FVM numerical simulation results for the velocity fields of direct hot extrusion 
of Al 6351 aluminium alloy billet, the following conclusions can be summarized, 
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a) In the analytical models proposed by Avitzur and the Zhao for the field of velocity components, 
no friction between the die wall and the extruded material is present in the equations. 

b) The distribution of the radial component of velocity Vr from the Avitzur’s and the FVM’s 
models are quite similar. 

c) However, the difference of the fields, distribution of velocity bands, for the longitudinal 
component of velocity Vz from the Avitzur’s and the FVM’s models is quite large. 

d) Assuming friction zero, m=0, in the FVM numerical simulation, the difference of the 
longitudinal component of velocity Vz with the Avitzur’ solution is still great.  

e) The distribution and values of the longitudinal velocity Vz of FVM simulations are similar to 
Zhao´s approach, but had poor correlation with the radial velocity Vr. 

f) The maximum radial velocity attained in extrusion at die exit corner was: Vr = -0.06 m/s (FVM 
approach),-0.07 m/s (Avitzur´s approach) and -0.12 m/s  (Zhao´s approach). 

g) Therefore, the region of most severe condition of wear on the inner wall of the die and material 
surface damage occurs in the area near the exit corner of the die. However, the predicted 
location of the severe wear region in the die wall by the FVM method is located prior to the 
point predicted by the Avitzur model. 
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