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Abstract. In an increasingly electrified technology driven world, power electronics is central to the 
entire clean energy manufacturing economy. Silicon (Si) power devices have dominated power 
electronics due to their low cost volume production, excellent starting material quality, ease of 
fabrication, and proven reliability. Although Si power devices continue to improve, they are 
approaching their operational limits primarily due to their relatively low bandgap, critical electric 
field, and thermal conductivity that result in high conduction and switching losses, and poor high 
temperature performance. Silicon Carbide’s (SiC) compelling efficiency and system benefits have 
led to significant development efforts over the last two decades and today planar and trench 
MOSFETs, and JFETs are commercially available from several vendors as discrete components or in 
high power modules in the 650 V to 1700 V voltage range. High impact application opportunities, 
where SiC devices are displacing their incumbent Si counterparts, have emerged and include 
automotive and rail power electronics with reduced losses and reduced cooling requirements; novel 
data center topologies with reduced cooling loads and higher efficiencies; variable frequency drives 
for efficient high power electric motors at reduced overall system cost; more efficient, flexible, and 
reliable grid applications with reduced system footprint; and “more electric aerospace” with weight, 
volume, and cooling system reductions contributing to energy savings. In particular, SiC insertion in 
electric vehicles brings major competitive advantages and is a volume application opportunity that 
can spur manufacturing economies of scale and lower system costs. As SiC continues to grow, the 
industry is lifting the last barriers to mass commercialization that include higher than Si device cost, 
relative lack of wafer planarity, the presence of basal plane dislocations, reliability and ruggedness 
concerns, and the need for a workforce skilled in SiC power technology to keep up with the rising 
demand. It should be noted that in many applications, insertion of SiC reduces overall system cost 
compared to Si even though SiC devices can cost 2-3 more than their Si counterparts. This is due to 
the passive component and cooling system simplifications enabled by the efficient high frequency 
SiC operation. In this paper, we will review key aspects of SiC technology and discuss overcoming 
barriers to mass commercialization. 

SiC Wafers 
Today, the SiC wafer represents 55-70% of the overall SiC device cost [1], a consequence of its 

unique complex fabrication specifics. Conventional SiC substrates are primarily grown by the seeded 
sublimation technique at temperatures of ~2500 °C, which creates process control challenges. Crystal 
expansion is limited requiring the use of large high-material quality seeds, and the sublimation growth 
rates can be relatively low in the order of 0.5-2 mm/h. Dislocations propagate through the boule and 
are present in the device wafers. Furthermore, SiC material’s hardness, which is comparable to that 
of diamond, makes sawing and polishing SiC substrates slow and costly relative to Si. 

The epitaxial layers, where SiC devices are fabricated, are grown by chemical vapor deposition 
(CVD) in horizontal or planetary reactors at 1500-1650 °C. Pressure typically ranges from 30 to 90 
Torr and growth rates can be as high as 46 mm/hr. Epitaxial growth is done on 4-degree off-cut 
substrates to maintain the polytype stability of the substrate. Epitaxy goals are to restrict 
“performance-degrading” defect propagation from the substrate into the epitaxy and ensure that any 
“performance-degrading” defects propagating from the substrate propagate as benign defects into the 
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epitaxy. As defects in SiC wafers limit large-area device yields, and numerous devices are paralleled 
in modules to increase current output, tight epitaxial doping and thickness uniformities are highly 
desirable, particularly as wafer size increases. Fig. 1 shows a JFET pinch-off voltage map (a 
parameter that depends on doping) of an 84.3% overall yield wafer [2]. The screening parameter 
ranges appear in the top table. The pinch-off voltage screening ranges appear in the bottom table. 
“Failed” JFETs appear in gray and are primarily located at the wafer edges. The 84.3% yield includes 
the contribution of devices located at the wafer edges. The large uniformly situated white squares 
contain experimental devices and characterization structures. Each color-coded wafer area 
corresponds to JFETs with pinch-off voltages within the range shown in the bottom right table. The 
“bull’s eye” structure (concentric circular regions of different colors) correlates well with the 
measured radial doping variation in the epitaxy of this “older generation” 3-inch 4H-SiC wafer. The 
radial doping variation renders “outer” devices out of specification and lowers yields.  

 

 
 
Overall, SiC wafer fabrication is more complex and slower than that of silicon.  The result is more 

expensive wafers, and ultimately higher device costs. A key part of the vertical integration occurring 
in today’s SiC industry is securing internal substrate and epitaxy wafer capabilities to eliminate 
purchasing profit margins. In addition, opportunities for disruptive SiC substrate formation, boule 
slicing, sawing/polishing, etc., have a high return and are being sought by several companies [3]. 

Presently, the majority of SiC device production is on 150 mm wafers. 200 mm SiC wafers were 
demonstrated in 2015, and a seven-year or so period historically passes before they become available 
as products. It is highly desirable that defect density and the cost of material per cm2 are the same or 
lower for 200 mm vs. 150 mm wafers. In addition, wafer planarity should not be worse in the 200 
mm wafers. Due to the large fab/foundry overheads, and assuming 200 mm tools are in place, the 
cost of processing a wafer is to a first approximation unrelated to its size. So processing a 200mm 
wafer will produce about 1.8 times more devices than a 150 mm wafer at the same processing cost. 
Of course, a 200 mm wafer will be more expensive than a 150mm wafer, and that needs to be factored 
into the overall cost equation. Many silicon fabs/foundries are starting to process SiC wafers as well, 
and given the plethora of 200 mm Si fabs/foundries with fully depreciated tools, there are many large 
200 mm Si companies waiting on the sidelines to enter SiC production when 200 mm wafers become 
commercially available. These are companies that have established 200 mm silicon wafer production 
and do not want to retool to fabricate at the 150 mm SiC wafer size that is currently commercially 
available. Therefore, when 200 mm wafers become available, many 200 mm fabs/foundries will start 
producing SiC devices. To illustrate the economic benefits of moving to larger wafer size, let us 
assume starting material cost parity per cm² between 150 mm and 200 mm wafers. Further assuming 
a $1500 cost for a fully processed 150 mm SiC wafer, and 60% of that coming from the starting wafer 
material (40% fabrication cost), a back of the envelope calculation points to a 17% device cost 

Fig. 1. JFET pinch-off 
voltage wafer map.“ The 
“bull’s eye” structure 
(concentric circular 
regions of different 
colors) correlates well 
with the measured radial 
doping variation in the 
epitaxy of this “older 
generation” 3-inch 4H-
SiC wafer. The screening 
parameter ranges appear 
in the tables. 
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reduction when switching to 200 mm. The same fabrication cost scenario, with now 50% of the 
overall cost representing the starting wafer material, allows for a 22% device cost reduction when 
switching to 200 mm wafers. These calculations do not include additional processing cost reductions 
that will come with streamlined mass production in large 200 mm volume fabs/foundries. 

SiC Device Fabrication 
For mass SiC commercialization, high yielding fabrication processes are required. Numerous well-

established processes from silicon technology have been successfully transferred to SiC. However, 
SiC material properties necessitate optimization of specific processes including wafer thinning, 
etching, heated implantation and anneal, and low resistivity Ohmic contact formation [2]. SiC is inert 
against chemical solvents and only dry etching is practical. Furthermore, the hardness of SiC results 
in low photoresist selectivity and a “hard” mask, usually composed of metal or dielectrics, is required 
for SiC photolithographic patterning and etch. 0.7 µm deep SiC mesas, trenched using a “silicon” 
reactive-ion etch (RIE) tool and a Cr/Al mask, are shown in Fig. 2. Cr assists with adhesion of metal 
layers to the underlying SiC surface. The RIE was fluorine- based for higher mask/SiC selectivity. 
RIE settings were optimized to eliminate micro-masking and achieve vertical etched sidewall profile 
formation. 

 

   

 
Conventional thermal diffusion is not realistic in doping SiC due to its high melting point and the 

low diffusion constant of dopants within SiC. Heated ion-implantation is typically performed for 
doping densities of 1016-1020 cm-3 (the higher doping densities assisting with ohmic contact 
formation), and room temperature implantation can work well for low implant doses (~ 1015 cm-3). 
Nitrogen/phosphorus and aluminum are the preferred impurities for n-type and p-type SiC doping, 
respectively. The as-implanted depth profiles are retained after the anneal for Al, P, and N as expected 
from their low diffusion constants. The lack of diffusion makes it easy to form shallow junctions and 
difficult to form deep ones. After ion implantation, a 1600-1800 °C anneal is performed for lattice 
damage recovery, and high dopant electrical activation. A protective cap layer covering the SiC wafer 
protects its surface from degradation due to Si desorption and migration of surface atoms, Fig. 3. 

The high value of the SiC/metal barrier results in rectifying metal contacts and post metal 
deposition anneal is required for ohmic contact formation. Typically, a 50-100 nm Ni layer is blanket 
deposited and patterned on the wafer for the simultaneous ohmic contact formation on the n-type and 
p-type doped regions, Fig. 4. Depending on the specifics of the fabrication process, isolating the 

Fig. 2. Reactive-ion etched 0.7 µm deep vertical 
SiC mesas using a Cr/Al mask. Cr assists with 
adhesion of metal layers to the underlying SiC 
surface. The RIE was fluorine- based. 

Fig. 3. Scanning electron microscopy image of a “post 
p+ ion-implantation” 1650 °C annealed SiC wafer in 
the presence of a carbon protective cap layer. 
Excellent surface morphology and high device yield 
are attained. 
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source from the gate areas with dielectrics can facilitate high yields in the subsequent high 
temperature processing. 

     

 
High temperature annealing of the Ni patterned wafer creates Ni-silicide for low resistivity ohmic 

contact formation. Rapid thermal annealing (RTA) at 950 °C, using standard silicon fabrication 
equipment, was used to create Ni-silicide with no metal strings, Fig. 5. The dielectric isolates the 
source from the gate areas eliminating shorting during the high temperature silicide process.   

Unlike Si wafers, SiC wafers are transparent. This complicates the use of “silicon” tools for CD-
SEM and metrology measurements, as the focal plane is determined with the use of an optical 
microscope. SiC-specific wavelength metrology/inspection tools are now available from multiple 
vendors. Another issue is the relative lack of flatness of SiC wafers, compared to those of Si, which 
can complicate photolithography. In addition, the high-temperature SiC processing can further 
degrade wafer flatness, occasionally rendering wafers unusable. This is particularly problematic with 
the thick epitaxy wafers used in +3.3 kV device fabrication. Efforts are underway to produce flatter 
starting SiC wafers, and to minimize flatness degradation during fabrication. Lastly, the poor 
SiC/SiO2 interface quality reduces inversion layer mobility. Thus, passivation techniques including 
annealing in nitrides are utilized to improve the SiC/SiO2 interface quality similar to the case of 
silicon [4].  

Device manufactures have developed IP for several SiC processing steps and compete on both 
design and processing. Although SiC is not fully CMOS-compatible, the SiC industry has leveraged 
Si technology processes and infrastructure by making the relatively small financial investments 
required to adapt existing fabs. Today, SiC manufacturing has matured and its fab infrastructure now 
mirrors that of Si. Integrated SiC device manufactures coexist with foundries and fabless companies, 
and design houses provide know-how and IP that can be leveraged to accelerate entry to market, Fig. 
6. SiC device fabrication in volume fabs alongside Si has emerged as a “cost reduction” model 
exploiting “silicon” manufacturing economies of scale. Through re-purposing older fully depreciated 
150 mm (and 200 mm in the near future) Si foundries, SiC power devices can be manufactured with 
the relatively small investments necessary to support the unique SiC processing steps. Minimizing 
fabrication cost by exploiting the mature Si volume production assumes the fab is loaded close to 
capacity with standard Si and SiC processes running on the same lines. In addition, aggregating the 
demand for SiC substrates and epilayers in volume fabs contributes to lower material costs.  Lower 
fabrication costs in a fully depreciated Si+SiC “capacity loaded” fab, coupled with decreased material 
costs can lead to significant price reductions for SiC devices. This approach offers a new opportunity 
for outdated Si foundries, which have not kept up with the channel length reductions of the last two 
decades, to continue manufacturing legacy Si parts while ramping up SiC fabrication that requires 
relatively modest ~0.3 micron design rules [5].  

Fig. 4. Scanning electron microscopy image of a 
patterned Ni layer on a SiC wafer surface. Dielectric 
isolates the metalized p+ implanted gate areas (pitted 
surface) from the n-doped source stripes. 

Fig. 5. Scanning electron microscopy image of the 
Ni patterned SiC wafer of Fig. 8, after a 950 °C 
rapid-thermal-annealing event. Ni silicide is 
formed with no shorting of the p-gate to the n-
source regions. 
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Fig. 6. The U.S. SiC fab infrastructure mirrors that of Si. It consists of Integrated Device Manufacturers, 
Foundries, Fabless companies, and Design houses. 

Defects, Reliability, and Ruggedness 
The majority of “killer” defects have been virtually eliminated in modern SiC wafers. Basal-Plane-

Dislocations (BPDs) are the major remaining defect degrading device performance [6]. BPDs can 
propagate from the wafer substrate through the thickness of the epitaxial layers where devices are 
fabricated. BPDs can also be generated during the high-temperature ion-implantation fabrication 
process. In commercial wafers, more than 95% of substrate BPDs propagate as relatively “benign” 
threading edge dislocations in epitaxial layers grown off axis by CVD [7].  

 

         

 

When bipolar current flows through a SiC device, electron–hole pair recombination at BPDs in the 
drift layer provides the energy to activate dislocation glides that give rise to stacking faults and 
degradation. To investigate the impact of BPDs on the electrical characteristics of ion-implanted SiC 
transistors 17 JFETs with 100-μm drift epilayers (10 kV rated) were stressed at a fixed gate-drain DC 

Fig. 7. Representative 100 µm drift layer SiC JFET 
forward gate–drain voltages as a function of time 
for a fixed dc 100-A/cm2 gate–drain bipolar stress. 
The compliance is set at VGD = 15 V. A biased 
JFET, with its gate–drain diode’s bipolar current 
giving rise to blue/violet electroluminescence, is 
shown in the inset. 

Fig. 8. BPD-related JFET ON-state conduction 
degradation and full recovery by annealing. The 
black squares, red triangles, and open circles 
represent the ON-state conduction characteristics 
prior to bipolar stress, after  5 hours of 100-A/cm2 
bipolar stress, and after a 350 °C anneal, 
respectively. 
 

Materials Science Forum Vol. 1062 129



 

bipolar current density of 100 A/cm2 for 5 hours. Representative curves are presented in Fig. 7 [8]. 
At 100 A/cm2, the gate–drain p-n junction is turned on, as evidenced by the emission of blue/violet 
electroluminescence at the edges of the JFET (inset photograph of Fig. 7), and bipolar current flows. 
Of the 17 JFETs stressed, six exhibit no forward gate-drain voltage degradation. This confirms that 
with optimized process flows and implantation recipes, BPDs are not generated during fabrication. 
Nine JFETs exhibit intermediate voltage degradation, and two exhibit severe voltage degradation. 
Bipolar current in the presence of BPDs leads to forward gate–drain p-n junction and ON-state 
conduction degradations as shown in Fig. 8. Interestingly, transistor BPD-related electrical 
degradations can be fully reversed by annealing at 350 °C, while non-degraded characteristics remain 
unaffected by this annealing. 

Threshold voltage instability is the main remaining reliability concern in SiC MOSFETs, which 
are the dominant transistors in SiC-based power electronics applications. It is primarily due to oxide 
traps at the SiC/gate-oxide interface. A positive shift in the SiC transistor’s threshold voltage has the 
deleterious effect of increasing conduction losses, while a negative shift is undesirable as it can 
spontaneously turn the device on. Valuable SiC reliability data has been accumulated over years of 
field operation and is driving device optimization. SiC devices can be made more rugged by 
leveraging design trade-offs. This, combined with intelligent gate drives, can provide adequate circuit 
protection [9]. 

Summary 
The compelling efficiency and system benefits of SiC are leading to wide adoption with insertion in 
electric vehicles being the volume application that enables manufacturing economies of scale and 
lower system costs. Industry is removing the last barriers to mass SiC commercialization that include 
higher than Si device cost, the presence of basal plane dislocations, and reliability and ruggedness 
concerns. The wafer represents a disproportionately high percentage of the overall SiC device cost, 
compared to that of Si, and technological improvements and transition to volume 200 mm wafer 
production will help lower those costs. SiC manufacturing has matured, non-CMOS compatible 
processes are fully developed, and the SiC fab infrastructure mirrors that of Si. Basal plane 
dislocations are the major remaining yield lowering defect to overcome. Gate-oxide interface quality 
improvements will enhance performance and alleviate any lingering reliability concerns.    
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