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Abstract. Impurity incorporation during vapor-phase epitaxy on stepped surfaces was modeled by 
classifying rate-limiting processes into i) surface diffusion, ii) step kinetics, and iii) segregation. 
Examples were shown for i) desorption-limited Al incorporation during chemical vapor deposition 
(CVD) of (0001) SiC, ii) preferential desorption of C atoms from kinks during CVD of Al-doped 
(000-1) SiC, and iii) segregation-limited C incorporation during metalorganic vapor-phase epitaxy of 
(0001), (000-1), and (10-10) GaN. 

Introduction 
Impurity incorporation during vapor-phase epitaxy has been modeled via, for example, site 

competition [1,2] and surface vacancies [3,4]. The latter, however, cannot explain the variation in 
impurity doping around facets [5]. Moreover, in the cases of homoepitaxial growths of SiC and GaN, 
misoriented substrates are often used for polytype [6] and doping-uniformity [7] controls, 
respectively. Accordingly, we modeled impurity incorporation during step-flow growth by taking Al-
doped SiC and C-doped GaN, as examples. We believe the models should be beneficial for 
determining allowable off-angle variations for desired doping-level uniformities in advanced  
devices. Although Al was chosen due to the availability of a thermodynamic model [8], N doping  
for SiC could be similarly treated under the assumption of the N segregation coefficient being  
unity [9]. 

Proposed Models 
Impurity incorporation during vapor-phase epitaxy on stepped surfaces was modeled by 

classifying rate-limiting processes into i) surface diffusion [10], ii) step kinetics [11], and iii) 
segregation [12] (Table I). 

 
i) Desorption limits impurity incorporation at step-edges when surface diffusion length λ is less 

than a half of the average inter-step distance, λo. This should be the case with incorporation of Al, 
whose λ was estimated to be less than 2 nm at 1550℃ [10], into stepped 4H-SiC (0001). This is due 
to relatively large λo (eg., 7.2 nm for θ = 8°) originating from four-bilayer-high steps [13]. Based on 
the Burton−Cabrera−Frank (BCF) theory [14], we derived the following equation for x in AlxSi1-xC 
[10]:  

FAl / x = [γ PSi
e / K (2 π mAl kB Tg)1/2] + [FSi − PSi

e / (2 π mSi kB Tg)1/2] [λo / 2λAl tanh (λo / 2λAl)],   (1)  
where Fi, Pi

e, and mi (i = Al, Si) are, respectively, the incident flux, equilibrium vapor pressure, and 
mass of i atom, K and γ are, repectively, the equilibrium constant and activity coefficient for AlC, Tg 
is growth temperature, and kB is Boltzmann’s constant. Eq. (1) explains why x was independent of 
the off-angle θ (ranging from 2° to 8°) when the C/Si ratio, r, was small (i.e., 1.8 [15]); due to large 
PSi

e, the first term in the right-hand side, which corresponds to the Al desorption flux, became 
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dominant (solid line in Fig. 1). Eq. (1) also explains why x increased with θ when r was large (i.e., 
4−6 [16]); due to small PSi

e, the second term in the right-hand side, which corresponds to the Al flux 
incorporated into the solid, became so large that x increased with the step density on the surface 
(dashed and dotted lines in Fig. 1). 
 

Table I. Rate-limiting processes of impurity incorporation during vapor-phase epitaxy. 

Classification of host-atom desorption from 
kinks 

Surface-diffusion length of impurity atoms 

Less than λo/2 Much larger than λo/2 

Preferential desorption of host atoms from kinks 
Surface diffusion 

Step kinetics 

Negligible desorption of host atoms from kinks  Segregation  

 

 
Fig. 1. FAl/x, calculated as first term (solid line) and second term (dashed and dotted lines) in right-
hand side of Eq. (1), as a function of equilibrium vapor pressure of Si, with assumptions of Tg of 
1550oC, growth rate of 1.3 μm/h, and λAl of 2.0 nm. 
 

ii) Preferential desorption of host atoms from kinks limits impurity incorporation at kinks even 
when λ >> λo/2. This should be the case with incorporation of Al into 4H-SiC (000-1) that has one-
bilayer-high steps [13]. We assume that a C atom making two bonds with a Si atom stays at kinks, 
while that a C atom making one bond with a Si atom easily desorbs from kinks [Fig. 2(a)].  

Since r is typically small (eg., r ≤ 6 [16]), some surface-diffusing Al atoms that arrive at kinks 
keep waiting (for an average time τC) until C atoms make one bond with Si atoms at kinks [Fig. 2(b)] 
before they are incorporated into the solid [Fig. 2(c)]. Based on the reported experimental results [16], 
surface Al concentration nAl (normalized by the mean residence time τAl) was calculated (Fig. 3). nAl 
in the vicinity of step-edges (i.e., local minima in Fig. 3) on (000-1) is much larger than that on (0001), 
indicating longer τC on (000-1). 
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Fig. 2. Schematic illustrations of (a) preferential desorption of a C atom having one bond with a Si 
atom, (b) adsorption of a C atom to a dangling bond of a Si atom and bonding of an Al atom to two 
C atoms, and (c) bonding of another Al atom to three C atoms at kinks on 4H-SiC (000-1). 

 
iii)  Segregation limits impurity incorporation even when λ >> λo/2 and desorption of host atoms 

from kinks is negligible. This should be the case with incorporation of C into GaN that is typically 
grown with the N/Ga ratio exceeding 1000 [17−19]; namely, soon after a N atom making one bond 
with a Ga atom desorbs from kinks, another N atom makes one bond with the Ga atom. When the 
length of time before the C concentration at the step-edge site reaches its equilibrium value, τstep, is 
much smaller than the meantime until a C atom incorporated at kinks moves through the step-edge 
site to the surface site, τ, the C concentration in the solid can be expressed as [20]  

N = Nsurf + (Nstep − Nsurf) exp (−D / Vstep a),                                                  (2)  
where Nsurf  and Nstep are, respectively, the equilibrium C concentrations at the surface site and at the 
step-edge site, D is the diffusion coefficient in the solid, Vstep is the average step velocity, and a is the 
lattice constant. As shown  in  Fig. 4,  the  results  for  (0001)  [17],   (000-1)  [18],   and   (10-10)  
[19] growths are well reproduced with D of 2×10−13 cm2/s that agrees with the experimentally 
determined value [21]. 

 
Fig. 3. Distribution of nAl/τAl calculated with assumptions of Tg of 1550oC, growth rate of 1.3 μm/h, 
r of 6, and λAl of 2.0 nm. 
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Fig. 4. Step-velocity dependences of carbon concentrations fitted to the reported results [17−19]. 

Summary 
Impurity incorporation during step-flow growth was modeled and exemplified by SiC: Al and 

GaN: C cases. We believe the proposed models should contribute to determining allowable off-angle 
variations for desired doping-level uniformities in advanced SiC and GaN devices. 
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