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Abstract. Different initial process steps during PVT crystal growth of SiC were monitored with a 
mass spectrometer. To measure the gas phase composition in the PVT growth machine during these 
steps the continuously pumped exhaust gas was analyzed by a quadrupole mass spectrometer 
(PrismaPro QMG 250). In order to reduce unintentionally doping of the crystal by contaminations in 
the growth setup the focus was on the release of nitrogen during the initial steps of the growth process. 
During the heat up of the growth setup in vacuum a substantial release of molecular nitrogen was 
observed at 800 °C. Further, the influence of pump and purge-steps on the amount of nitrogen in the 
gas phase was examined. After performing a pump and purge step, the intensity of the measurable 
nitrogen-related signal (m/z = 28) was approximately 20 % of the initial value. In-situ monitoring of 
the gas phase during the initial steps of crystal growth proved to be a versatile tool for the development 
of a process minimizing unintentionally doping through released nitrogen.  

Introduction 
Controlled doping is an important issue for bulk growth of silicon carbide. Stable doping density 

over the whole bulk is desirable for n-type material, for high purity semi-insulating a low doping 
density is necessary [1, 2]. Therefore, it is important to know the sources of unintentionally 
background doping. One source of background doping are impurities incorporated in material which 
are present in the reaction chamber (e.g. powder source, crucible and other carbon part) [3, 4]. These 
materials could be examined previously and therefore are not the main issue of this study. Another 
source of background doping are parts in the PVT growth machine with high specific surfaces. A 
representative of this type is the graphite isolation. Gas species of the ambient air such as nitrogen, 
could adhere on the surface before installation and could release uncontrolled during crystal growth. 
Few is known about the release of nitrogen from the growth setup during the initial phases of PVT 
crystal growth. However, many authors report unintentional background doping with nitrogen [5, 6].  

In this work, the evolution of nitrogen release during different initial phases of silicon carbide 
crystal growth over time is investigated using in-situ mass spectroscopy.  

Experimental 
Growth machine and setup. The monitoring was conducted during growth processes of 100 mm 

n-type 4H-SiC crystals in a conventional PVT growth machine with inductive heating. To provide 
the desired pressure an oil-free, multi-stage roots pump in combination with a control valve is applied 
to the growth machine. In all the processes the growth setup and the isolation were of the same type 
and shape. As silicon carbide source nominally undoped material exhibiting a purity of ca. 6N was 
applied for all growth runs. Temperature measurements above 900 °C were done with quotient 
pyrometers, below T = 900 °C it is an extrapolation and is intended as an illustration (e.g. in figures).  
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Process steps. The initial phases of crystal growth consist of five steps: (i) pump down to vacuum 
at room temperature, (ii) holding vacuum during heat up to medium temperature (T < 1500 °C), 
(iii) T-plateau at medium temperature (T < 1500 °C), (iv) heat up to high temperature (T > 2000 °C) 
and build-up of an inert gas pressure of p = 800 mbar, (v) gradual reduction of pressure (typically in 
the range of 5 to 10 mbar) and introducing of nitrogen gas for doping. During this last step the growth 
of the crystal will begin. Optionally, at the end of process step (iii) it is possible to conduct one (or 
more) pump and purge-steps. This optional step is divided into two substeps: (iiia) building up an 
inertgas-pressure of 200 mbar with an argon flow of 100 sccm for 90 minutes, (iiib) stopping the 
argon flow and pumping down the PVT setup to vacuum pressure again. Between two pump and 
purge steps an interval of about 120 minutes is necessary to reach a sufficient vacuum in the PVT 
growth machine.  

Residual gas analysis. During all five steps, exhaust is pumped out of the PVT growth machine. 
A part of the exhaust gas volume can be diverted between the control valve and the roots pump and 
passed through a high-vacuum pumping station (HiCube 80 Eco, Pfeiffer Vacuum Technology) in a 
quadrupole mass spectrometer (PrismaPro QMG 250, Pfeiffer Vacuum Technology) for gas analysis. 
At process step (i), (ii) and (iii) the control valve is fully opened, at step (iv) and (v) the valve is 
actively controlled to provide the desired pressure. It must be mentioned that the spectra can only be 
compared if the control valve is in the same position during the measurements.  During monitoring 
of a growth run, a mass spectrum is recorded every ten minutes in the range of m/z = 1 to m/z = 50.  

Results and Discussion 
Release of nitrogen at initial process steps. In the initial steps of the PVT growth process mainly 

the process step (ii) and (iii) are of interest, as these steps serve to purify the growth setup. During 
the heat up in vacuum, there are some abnormalities in the PVT pressure curve observable. In the first 
part of step (ii) the pressure increases linearly with temperature, followed by a phase of decreasing 
pressure. After this second part, the pressure increases again and reaches the maximum pressure in 
step (ii), followed by a phase of slightly decreasing pressure. During this process step, the exhaust 
gas was continuously analyzed with the mass spectrometer to determine a possible correlation 
between pressure evolution and nitrogen present in the gas phase.  

In Fig. 1 the pressure in the PVT growth machine and the temperature at the top of the crucible 
over run time of process step (ii) is shown. The figures represent the data of crystal growth run A 
(top) and B (bottom). For better understanding of the phenomena in the evolving of pressure, the 
duration of process step (ii) was varied. In growth run A, the length of step (ii) was t = 12 h, in growth 
run B it was t = 36 h. By examination of the evolution of the molecular nitrogen-related signal (at 
m/z = 28 in the spectra) with mass spectrometry, it is noticeable, that the curve progression of the 
nitrogen-related signal shows segments which are in accordance with the pressure curve and others 
which are not. During two thirds of the run time of process step (ii), the intensity of this signals 
increases slightly. At the time, which the pressure curve describes the first maxima, the intensity of 
the nitrogen-related signal still increasing constantly. No connection between the signal and the 
pressure can be established. The maximum in the curve of the nitrogen-related signal (or in the case 
of B: the plateau) occur at the same time as the second pressure maximum in the PVT growth 
machine. Due to the concurrence of these maxima, it seems reasonable to assume that the pressure in 
the PVT growth machine increases because of the massive release of nitrogen inside the reaction 
chamber. Maxima of other signals than m/z = 28 could not be seen in the full mass spectra at this 
time, except the signal at m/z = 12 (not shown). However, it is more than one order of magnitude 
weaker than the signal at m/z = 28. In both growth runs, the maxima in the nitrogen-related signal 
were measured at the end of the second third or at the beginning of the last third of the step run time. 
At this time, both growth setups will be in the same temperature range. So, it seems to be a 
temperature-dependent release of nitrogen from the growth setup, which reaches the necessary 
temperature at this point. The part of the growth setup which releases the nitrogen at this time is 
actually not known. Further examinations are necessary to understand this process. 
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Fig. 1: Pressure (dark green / a.) and temperature (red / b.) in the PVT growth machine during initial 
step (ii). Additionally, the variation of the mass spectroscopy signal at m/z = 28 during initial step (ii) 
over time (yellow / c.) is shown. Data from growth run no. A (top) and B (bottom).  

 
Pump and purge steps. To reduce unintentional species from the growth setup it is common to 

carry out one (or more) pump and purge steps before starting crystal growth.  
Analogous to Fig. 1, Fig. 2 shows the pressure in the PVT growth machine, the temperature at the 

top of the crucible and the measured signal of m/z = 28 during the pump and purge steps at the end 
of process step (iii). The figure represents the data of crystal growth run B. At the end of process step 
(iii) the pressure in the PVT growth machine lays constant at p = 2∙10-2 mbar, after the first pump and 
purge step the pressure reaches a value of p = 1.75∙10-2 mbar. One reason for the significantly lower 
pressure that can be achieved is the reduction of the present amount of nitrogen. The signal intensity 
at m/z = 28 was significantly reduced from 3.6∙10-11 A at run time t = 73 h to almost 0.8∙10-11 A at 
run time t = 77 h. By pumping and flooding with inert gas again it should be possible to further reduce 
the amount of nitrogen and the achievable vacuum pressure. Besides the reduction of the amount of 
molecular nitrogen as a result of the pump and purge steps, a reduction of the signal intensity was 
also observable at m/z = 2 (molecular hydrogen), m/z = 12 (carbon), m/z = 14 (nitrogen) and others 
(data not shown). It should be mentioned, that during active argon flow the valve at the exhaust outlet 
is actively controlled and because of that the signal intensity measured by the mass spectrometer is 
not comparable to that measured by fully opened valve.  
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Fig. 2: Pressure (dark green / a.) and temperature (red / b.) in the PVT growth machine during pump 
and purge steps. Additionally, the variation of the mass spectroscopy signal at m/z = 28 over time 
(yellow / c.) is shown. Data from growth run no. B.  

Summary 
The evolution of the amount of nitrogen during the initial steps of silicon carbide crystal growth 

in a PVT growth machine could be monitored by in-situ mass spectrometry. During heat up in vacuum 
a sharp rise in the intensity of the nitrogen-related signal was measured in the range of about 
T = 800 °C. This event could be related to the pressure increase that occurred at the same time in the 
PVT growth machine. Additionally, the influence of pump and purge steps as part of the initial crystal 
growth process on the amount of nitrogen in the gas phase was examined. It was shown that the 
amount of nitrogen could be reduced efficiently with this method.  

 
Using these results further developments of the growth process are possible to minimize the 

incorporation of unintentionally released nitrogen. Besides this, other species occurring during the 
process steps could be monitored and examined for further understanding of reaction- and releasing 
processes.  
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