Car Disc Brake Squeal: Theoretical and Experimental Study


Article Preview



Materials Science Forum (Volumes 440-441)

Edited by:

M.P. Cartmell




Q. Cao et al., "Car Disc Brake Squeal: Theoretical and Experimental Study", Materials Science Forum, Vols. 440-441, pp. 269-277, 2003

Online since:

November 2003




[1] Akay, A. Acoustics of friction. J. Acoust. Soc. Am., Vol. 111 (2002), pp.1525-1548.

[2] North, N. R. Disc Brake squeal. Proc. IMechE, C38/76 (1976), pp.169-176.

[3] Crolla, D. A. and Lang, A. M. Brake noise and vibration  the state of the art. In Vehicle Technology, No. 18 in Tribology Series, ed. Dawson, D., Taylor, C. M. and Godet, M. (Pro. Eng. Pub., 1991), pp.165-174.


[4] Nishiwaki, M. R Review of Study on Brake Squeal. Jap. Soc. Auto. Eng. Rev., Vol. 11 (1990), pp.48-54.

[5] Yang, S. and Gibson, R. F. Brake vibration and noise: review, comments and proposals. Int. J. Mater. Product Tech., Vol. 12 (1997), pp.496-513.

[6] Kinkaid, N. M., O'Reilly, O M and Papadopoulos, P. Automotive disc brake squeal: a review. J. Sound Vib., to be published in (2003).

[7] Lee, Y. S., Brooks, P. C., Barton, D. and C., Crolla, D. A. A study of disc brake squeal propensity using parametric finite element model. In IMechE Conf. Trans., European Conf. On Noise and Vibration, 12-13 May 1998, pp.191-201.

[8] Nack, W. V. Brake squeal analysis by the finite element method. Int. J. Vehicle Des., Vol. 23 (2000), pp.263-275.

[9] Ouyang, H. and Mottershead, J. E. A moving-load model for disc-brake stability analysis. Trans. ASME, J. Vib. Acoust., Vol. 125 (2003), pp.53-58.


[10] Hu, Y. and Nagy, L. I. Brake squeal analysis using nonlinear transient finite element method. SAE Paper 971610, (1997).


[11] Ouyang, H., Mottershead, J. E., Brookfield, D. J., James, S. and Cartmell, M. P. A methodology for the determination of dynamic instabilities in a car disc brake. Int. J. Vehicle Design, Vol. 23 (2000), pp.241-262.


[12] Dunlap, K. B, Riehle, M. A. and Longhouse R. E. An investigative overview of automotive disc brake noise. SAE Paper 1999-01-0142, (1992).


[13] Hulten, J. O. and Flint, J. An assumed modes approach to disc brake squeal analysis. SAE Paper 1999-01-1335, (1999).


[14] Fryba, L. Vibration of Solids and Structures under Moving Loads. Noordhoff, Groningen, (1972).

[15] Mottershead, J. E. Vibration and friction-induced instability in discs. Shock Vib. Dig., Vol 30 (1998), pp.14-31.

[16] Yuan, Y. A study of the effects of negative friction-speed slope on brake squeal. Proc. 1995 ASME Des. Eng. Conf., Boston, Vol. 3, Part A, pp.1135-1162.

[17] James, S., Brookfield, D., Ouyang, H., and Motterhsead, J. E. Disc brake squeal - an experimental approach. Proc. 5th Int Conf on Modern Practice in Stress and Vibration Analysis, 911 Sept 2003, University of Glasgow, Scotland. Appendix C, K, M damping, mass and stiffness matrices of the stationary components. f force vector for the finite element model of the stationary components. j number of contact nodes at the disc/pads interface. k, l (m, n) number of nodal circles and number of nodal diameters in the mode of the bolted disc. p force vector consisting of all ip . klq modal co-ordinate for k nodal circles and l nodal diameters for the disc. q modal co-ordinate vectors for the disc and the stationary components. r , θ, z radial, circumferential and axial co-ordinates of the cylindrical co-ordinate system. t time. wvu , displacements in the zr and, θ directions respectively. ppp , wvu wvu , displacement vectors of the pad nodes at the disc/pads interface. x displacement vector corresponding to f. ox displacement vector for the nodes other than the contact nodes at the disc/pads interface. ν Poisson's ratio of the disc. ξ damping coefficient of the disc. klω undamped natural frequency corresponding to klq . ω the imaginary part of a system eigenvalue (frequency).